Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biological Sciences Faculty Publications

Drug resistance

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig Jan 2010

Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 x Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South-East Asia-derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute …


Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig Jan 2007

Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I …