Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Coordination Of Different Ligands To Copper(Ii) And Cobalt(Iii) Metal Centers Enhances Zika Virus And Dengue Virus Loads In Both Arthropod Cells And Human Keratinocytes, Shovan Dutta, Michael J. Celestine, Supreet Khanal, Alexis Huddleston, Colin Simms, Jessa Faye Arca, Amlam Mitra, Loree Heller, Piotr Kraj, Michael Ledizet, John F. Anderson, Girish Neelakanta, Alvin A. Holder, Hameeda Sultana Jan 2018

Coordination Of Different Ligands To Copper(Ii) And Cobalt(Iii) Metal Centers Enhances Zika Virus And Dengue Virus Loads In Both Arthropod Cells And Human Keratinocytes, Shovan Dutta, Michael J. Celestine, Supreet Khanal, Alexis Huddleston, Colin Simms, Jessa Faye Arca, Amlam Mitra, Loree Heller, Piotr Kraj, Michael Ledizet, John F. Anderson, Girish Neelakanta, Alvin A. Holder, Hameeda Sultana

Biological Sciences Faculty Publications

Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex …


Human Rickettsial Pathogen Modulates Arthropod Organic Anion Transporting Polypeptide And Tryptophan Pathway For Its Survival In Ticks, Vikas Taank, Shovan Dutta, Amrita Dasgupta, Durland Fish, John F. Anderson, Hameeda Sultana, Girish Neelakanta Oct 2017

Human Rickettsial Pathogen Modulates Arthropod Organic Anion Transporting Polypeptide And Tryptophan Pathway For Its Survival In Ticks, Vikas Taank, Shovan Dutta, Amrita Dasgupta, Durland Fish, John F. Anderson, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

The black-legged tick Ixodes scapularis transmits the human anaplasmosis agent, Anaplasma phagocytophilum. In this study, we show that A. phagocytophilum specifically up-regulates I. scapularis organic anion transporting polypeptide, isoatp4056 and kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), for its survival in ticks. RNAi analysis revealed that knockdown of isoatp4056 expression had no effect on A. phagocytophilum acquisition from the murine host but affected the bacterial survival in tick cells. Knockdown of the expression of kat mRNA alone or in combination with isoatp4056 mRNA significantly affected A. phagocytophilum survival …


Ticks Elicit Variable Fibrinogenolytic Activities Upon Feeding On Hosts With Different Immune Backgrounds, Ashish Vora, Vikas Taank, John F. Anderson, Durland Fish, Daniel E. Sonenshine, John D. Catravas, Hameeda Sultana, Girish Neelakanta Mar 2017

Ticks Elicit Variable Fibrinogenolytic Activities Upon Feeding On Hosts With Different Immune Backgrounds, Ashish Vora, Vikas Taank, John F. Anderson, Durland Fish, Daniel E. Sonenshine, John D. Catravas, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on …


Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig Jan 2010

Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 x Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South-East Asia-derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute …


Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig Jan 2007

Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I …


Dissecting The Loci Of Low-Level Quinine Resistance In Malaria Parasites, Michael T. Ferdig, Roland A. Cooper, Jianbing Mu, Bingbing Deng, Deirdre A. Joy, Xin-Zhuan Su, Thomas E. Wellems Jan 2004

Dissecting The Loci Of Low-Level Quinine Resistance In Malaria Parasites, Michael T. Ferdig, Roland A. Cooper, Jianbing Mu, Bingbing Deng, Deirdre A. Joy, Xin-Zhuan Su, Thomas E. Wellems

Biological Sciences Faculty Publications

Quinine (QN) remains effective against Plasmodium falciparum, but its decreasing efficacy is documented from different continents. Multiple genes are likely to contribute to the evolution of QN resistance. To locate genes contributing to QN response variation, we have searched a P. falciparum genetic cross for quantitative trait loci (QTL). Results identify additive QTL in segments of chromosomes (Chrs) 13, 7 and 5, and pairwise effects from two additional loci of Chrs 9 and 6 that interact, respectively, with the QTL of Chrs 13 and 7. The mapped segments of Chrs 7 and 5 contain pfcrt, the determinant of …


Multiple Transporters Associated With Malaria Parasite Responses To Chloroquine And Quinine, Jianbing Mu, Michael T. Ferdig, Xiaorong Feng, Deirdre A. Joy, Junhui Duan, Tetsuya Furuya, G. Subramanian, L. Aravind, Roland A. Cooper, John C. Wootton, Momia Xiong, Xin-Zhuan Su Jan 2003

Multiple Transporters Associated With Malaria Parasite Responses To Chloroquine And Quinine, Jianbing Mu, Michael T. Ferdig, Xiaorong Feng, Deirdre A. Joy, Junhui Duan, Tetsuya Furuya, G. Subramanian, L. Aravind, Roland A. Cooper, John C. Wootton, Momia Xiong, Xin-Zhuan Su

Biological Sciences Faculty Publications

Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P-glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CO), quinine (ON) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CO resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CO and ON. Such molecules may contribute to increasing incidences of ON treatment failure, the molecular basis …