Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Dissecting Molecular Mechanism Of Heat Stress On Anther Development In Fragaria Vesca, Shikha Malik Dec 2020

Dissecting Molecular Mechanism Of Heat Stress On Anther Development In Fragaria Vesca, Shikha Malik

Theses and Dissertations

Strawberry is an important fruit crop in the Rosaceae family. Originally from the temperate region, strawberry is vulnerable to heat waves, which reduce fruit yield and quality. Previous studies have shown that heat stress impairs pollen development; however, the molecular mechanisms by which heat stress affects the development of anthers, where pollen develops, are unclear. Due to the genome complexity of cultivated strawberry (Fragaria × ananassa, 2n = 8x= 56), Fragaria vesca (2n = 2x = 14) was used, which emerges as a diploid model plant for Rosaceae, to study the effects of heat stress on anther development at morphological …


Understanding The Role Of Protein Kinases Kin1 And Kin2 In The Protein Folding Pathways In The Yeast Saccharomyces Cerevisiae, Chandrima Ghosh May 2020

Understanding The Role Of Protein Kinases Kin1 And Kin2 In The Protein Folding Pathways In The Yeast Saccharomyces Cerevisiae, Chandrima Ghosh

Theses and Dissertations

Eukaryotic protein kinases catalyze the transfer of the -phosphate of an ATP to a serine/threonine/tyrosine residue present in a protein substrate. The phosphorylation of proteins has profound effects on their activity and protein-protein interactions, thus regulating a plethora of cellular processes, including cell growth, differentiation and protein homeostasis (or proteostasis). Our lab is the first to demonstrate that protein kinases Kin1 and its paralog Kin2 in the budding yeast Saccharomyces cerevisiae, orthologs of human microtubule affinity-regulating kinase (MARK), contribute to protein-folding homeostasis inside the endoplasmic reticulum (ER), in addition to their canonical roles in cellular exocytosis. The main aim of …


Photobiomodulation Modulates Bioenergetics And Oxidative Stress In An In Vitro Model Of Diabetic Retinopathy, Alexandria E. Hall May 2020

Photobiomodulation Modulates Bioenergetics And Oxidative Stress In An In Vitro Model Of Diabetic Retinopathy, Alexandria E. Hall

Theses and Dissertations

Diabetic Retinopathy (DR) is the most common complication of diabetes mellitus and a leading cause of blindness. The pathophysiology of DR is complicated, involving mitochondrial dysfunction, oxidative stress, inflammation and vascular degeneration. The most common therapeutic approach for DR includes the use anti-vascular endothelial growth factor (VEGF) drugs to reduce vascular proliferation. These treatments are invasive, frequently ineffective and have numerous adverse effects. A non-invasive more effective therapy is clearly needed. An alternative, non-invasive therapy using far-red light (photobiomodulation, PBM) may be an improvement over current therapy. PBM has documented efficacy in experimental and clinical studies of retinal disease including …


Gene Regulatory Mechanisms Driving Temporal Dynamics Of Lineage Specific Differentiation In The Cranial Neural Crest, Maria R. Replogle May 2020

Gene Regulatory Mechanisms Driving Temporal Dynamics Of Lineage Specific Differentiation In The Cranial Neural Crest, Maria R. Replogle

Theses and Dissertations

Genetic and environmental perturbations impacting neural crest (NC) development can result in pleiotropic structural and functional birth defects, many of which are associated with pediatric syndromes. As developmental precursors, the NC has the unique capacity to give rise to a diverse array of ectodermal and mesoectodermal cell types, from neurons and glia of the peripheral nervous system to the cartilage and bone of the face. In order to transition from a multipotent progenitor to a specific cell type, NC cells must undergo a series of dynamic morphological and behavioral transformations that gradually unfold over time. However, the NC is rare …


A Tale Of Two Adaptors: The Role Of Two Adaptor Proteins In Pseudomonas Aeruginosa Chp Chemosensory System Signal Transduction And Implications For Chemosensory Array Formation, Zachary Hying May 2020

A Tale Of Two Adaptors: The Role Of Two Adaptor Proteins In Pseudomonas Aeruginosa Chp Chemosensory System Signal Transduction And Implications For Chemosensory Array Formation, Zachary Hying

Theses and Dissertations

Bacteria use chemosensory systems to coordinate environmental signals to direct chemotaxis and make lifestyle decisions such as surface attachment and biofilm formation. Chemosensory systems form extended arrays with pseudo-hexagonal symmetry that are essential for efficient signal transduction. These arrays consist of three essential components: Methyl-Accepting Chemotaxis proteins (MCPs), which receive signals, a histidine kinase to coordinate cell responses through phosphorylation of response regulators, and an adaptor protein to transduce conformational change and facilitate array formation. Pseudomonas aeruginosa uses four chemosensory systems to control flagellar-based motility, type IV pili-mediated twitching motility and acute virulence, and biofilm formation. The Chp chemosensory system …