Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick May 2024

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick

Theses/Capstones/Creative Projects

In the context of rising multidrug resistance in biofilm-forming pathogens like Pseudomonas aeruginosa, this study investigates the role of the understudied transcription factor PA5189 in antibiotic resistance and biofilm formation. PA5189 deletion and overexpression mutants were created in a parent P. aeruginosa strain using pEX18Tc-based recombinant suicide vectors, with genotypic verification of putative triparental conjugants achieved through restriction digestion and PCR. The study revealed that PA5189 overexpression significantly increases resistance to commonly used broad spectrum antibiotics such as ciprofloxacin and imipenem. Additionally, differential expression of PA5189 was found to notably affect biofilm formation, with variations contingent on the nutrient …


Characterization Of The Dimerization Domains On The Mannose-6-Phosphate/Insulin-Like Growth Factor Ii Receptor, Tyler Degener Dec 2019

Characterization Of The Dimerization Domains On The Mannose-6-Phosphate/Insulin-Like Growth Factor Ii Receptor, Tyler Degener

Theses/Capstones/Creative Projects

The mannose-6-phosphate/insulin-like growth factor II (M6P/IGF2) receptor is a transmembrane protein known to sequester growth factors from the extracellular matrix. This behavior suggests a mechanism of tumor suppression. Structurally, the receptor’s extracellular region is segmented into 15 homologous repeats, which are divided further into 5 triplet domains, labelled 1-3, 4-6, 7-9, 10-12, and 13-15. What is notable about the triplets is their propensity to form dimers with triplets on a second M6P/IGF2 receptor. In fact, previous studies indicate that this protein functions optimally when dimerized. Thus, the purpose of this experiment is to characterize these domain interactions. Using a urea …


Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D. May 2018

Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D.

Theses/Capstones/Creative Projects

Like other eukaryotic organisms, Toxoplasma gondii promoters feature both constitutive and life-stage regulated cis-elements. Using a transcriptomic microarray approach, a cluster of transcripts upregulated early during bradyzoite differentiation was identified. Computational analysis of the promoter regions of these “up-early” transcripts identified a shared upstream consensus motif, a putative transcription factor binding site. Using a dual luciferase assay adapted for recombinational cloning and reporter gene quantification by qPCR, we demonstrate developmental stage-specific expression of the luciferase reporter gene inserted downstream of the transcription factor binding site. The shared consensus motif was found to be an autonomous cis-element by conversion …


Ketone Bodies And Signaling In Pancreatic Cancer Cell Lines, Kyla B. Buettner, Pankaj K. Singh, Surendra K. Shukla May 2018

Ketone Bodies And Signaling In Pancreatic Cancer Cell Lines, Kyla B. Buettner, Pankaj K. Singh, Surendra K. Shukla

Theses/Capstones/Creative Projects

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, and 95% of these cases are caused by PDAC (pancreatic ductal adenocarcinoma). Ketone bodies have previously been shown to decrease cell proliferation and cancer-induced cachexia. The molecular mechanism of ketone body-mediated growth inhibition of pancreatic cancer cells is not well understood. Research conducted thus far has not explored which molecular pathways are affected by ketone body treatment in pancreatic cancer cells. In the current study, the effect of the ketone body sodium hydroxybutyrate on the JAK-STAT and mTOR pathways and cell migration was explored. A decrease …