Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Molecular Biology

Identification Of Clonal Evolution Pattern And Mutation Event Associated With Relapsed/Refractory Diffuse Large B-Cell Lymphoma Using Next-Generation Sequencing, Cheng Wang Dec 2020

Identification Of Clonal Evolution Pattern And Mutation Event Associated With Relapsed/Refractory Diffuse Large B-Cell Lymphoma Using Next-Generation Sequencing, Cheng Wang

Theses & Dissertations

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid malignancy. About 30% of DLBCL cases respond poorly to initial treatment and eventually relapse. For these patients, the current treatment regimen is quite limited, and the prognosis is poor. Gene mutations and genetic alterations play an important role in lymphomagenesis. However, the genetic alterations or gene mutations underlying the disease resistance/relapse in DLBCL are still unknown. The clonal evolution during the process of disease progression is elusive as well. Our goal is to study the genetic alterations in DLBCL, particularly paired diagnostic and relapsed/refractory DLBCL, to better understand the mutation landscape …


Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu Dec 2020

Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu

Theses & Dissertations

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one major group of oxidized protein targets were involved in energy metabolism. The oxidative phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with MnTE-2-PyP treatment, but mitochondrial …


Characterizing The Critical Role Of Metabolic And Redox Homeostasis In Colorectal Cancer, Danielle Frodyma Dec 2020

Characterizing The Critical Role Of Metabolic And Redox Homeostasis In Colorectal Cancer, Danielle Frodyma

Theses & Dissertations

Metabolic alterations are a hallmark of cancer and the mechanism by which these adaptations sustain cancer cell growth are complex and dependent on tissue type. In colon cancer, Peroxisome Proliferator Activated Receptor γ Coactivator 1 β(PGC1��) and Estrogen-Related Receptor α (ERR��) are overexpressed and contribute to tumor growth. Previous studies have shown that PGC1�� and ERR�� regulate many metabolic processes by controlling vital gene expression. Here, we show that PGC1�� and ERR�� drive oxidative phosphorylation and glycolysis in colon cancer cell lines and we evaluated downstream effectors and processes.

A dysfunction in the reductive and oxidative capacity of the cell …


Elucidating The Role Of Ecdysoneless In Mrna Processing, Irfana Saleem Dec 2020

Elucidating The Role Of Ecdysoneless In Mrna Processing, Irfana Saleem

Theses & Dissertations

The mammalian orthologue of the evolutionarily conserved Ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression and mitigation of ER stress. However, the molecular mechanisms of ECD function in mammalian cells remain unclear. Here, using mass spectrometry analysis of the mammalian ECD interactome, we identified several components of the mRNA export complexes as binding partners of ECD and then characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A and its associated partners. FISH analysis of Poly-A-tailed mRNAs revealed that ECD depletion/deletion blocks the mRNA export from the nucleus to the cytoplasm. We have …


Glycan-Dependent Adherence And Skin Colonization Of Staphylococcus Epidermidis Mediated By The Surface Protein Aap., Paroma Roy Aug 2020

Glycan-Dependent Adherence And Skin Colonization Of Staphylococcus Epidermidis Mediated By The Surface Protein Aap., Paroma Roy

Theses & Dissertations

Skin-dwelling coagulase-negative staphylococci (CoNS), a group of bacteria that includes Staphylococcus epidermidis, has been implicated to promote skin immunity and antimicrobial defense and prohibit colonization of skin by pathogens like S. aureus. As a skin inhabitant, S. epidermidis lives in tight association with corneocytes, the cells that constitute the uppermost layer of the skin epidermis. Yet the molecular mechanism responsible for adhesion of S. epidermidis to corneocytes remains poorly understood. Our study indicated that Accumulation-associated protein (Aap), a cell-wall anchored, fibrillar adhesin mediates bacterial-host interaction, demonstrated by significantly higher corneocyte binding by Aap-positive 1457 mutants as compared to …


Novel Regulatory Roles Of Endocytic Membrane Trafficking Proteins In Mitochondrial Homeostasis, Trey Farmer May 2020

Novel Regulatory Roles Of Endocytic Membrane Trafficking Proteins In Mitochondrial Homeostasis, Trey Farmer

Theses & Dissertations

Endocytic membrane trafficking is a basic cell process that is critical for regulating the transport of lipids and proteins. Our lab focuses on the cellular functions and mechanisms of the proteins that regulate these pathways. A key family of regulatory proteins is the C-terminal Eps15 Homology Domain (EHD) protein family. The EHD family includes EHD1-4, which are ubiquitously expressed in mammalian tissues. While these isoforms do have some overlapping functions, each protein also has distinct activities in regulating the shape and fission of membranes throughout the endocytic pathways. Specifically, EHD1 uses ATP hydrolysis to induce constriction and fission of endocytic …