Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Molecular Biology

Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein Jan 2020

Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein

Theses and Dissertations--Molecular and Cellular Biochemistry

Chronic, low dose exposure to inorganic arsenic (iAs) is a public health concern throughout the world, contributing to the development of many diseases, including lung cancer. Several mechanisms for iAs-mediated carcinogenesis have been proposed, of which the production of reactive oxygen species and formation of chromosomal aberrations are the most studied. Another equally important, yet less studied mechanism is dysregulation of epigenetic marks. “Epigenetics” refers to changes that occur on the DNA and chromatin that do not alter base pair identity, but alter compaction, expression, and regulation of specific DNA sequences. There are several types of epigenetic marks including histone ...


The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou Jan 2019

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou

Theses and Dissertations--Molecular and Cellular Biochemistry

RBMS3 belongs to the family of c-myc gene single-strand binding proteins (MSSPs) that play important roles in transcriptional regulation. Here, we show that RBMS3 functions as a tumor promoter in triple-negative breast cancer (TNBC), a highly aggressive BC subtype. Analysis of RBMS3 expression shows that RBMS3 is upregulated at both mRNA and protein levels in TNBC cells. Functionally, overexpression of RBMS3 increases cell migration, invasion and cancer stem cell (CSC) behaviors. Moreover, RBMS3 induces expression of epithelial-mesenchymal transition (EMT) and CSC markers. Conversely, loss of RBMS3 in TNBC BT549 cells inhibits cell proliferation, migration and mesenchymal phenotype. Correlation analysis shows ...


Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer Jan 2019

Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the sole carbohydrate storage molecule found in mammalian cells and plays an important role in cellular metabolism in nearly all tissues, including the brain. Defects in glycogen metabolism underlie the glycogen storage diseases (GSDs), genetic disorders with variable clinical phenotypes depending on the mutation type and affected gene(s). Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy and a non-classical GSD. LD typically manifests in adolescence with tonic-clonic seizures, myoclonus, and a rapid, insidious progression. Patients experience increasingly severe and frequent epileptic episodes, loss of speech and muscular control, disinhibited dementia, and severe cognitive decline ...


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we ...


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the cell bodies of ...


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver ...


Influence Of Dietary Ractopamine And Supranutritional Supplementation Of Vitamin E On Proteome Profile Of Postmortem Beef Longissimus Lumborum Muscle, Hyun Mok Kim Jan 2018

Influence Of Dietary Ractopamine And Supranutritional Supplementation Of Vitamin E On Proteome Profile Of Postmortem Beef Longissimus Lumborum Muscle, Hyun Mok Kim

Theses and Dissertations--Animal and Food Sciences

The effects of dietary ingredients on the proteome profile of postmortem beef longissimus lumborum (LL) muscle were evaluated. In the first experiment, the influence of dietary ractopamine on the whole-muscle proteome of beef LL was examined. Five proteins were differentially abundant between ractopamine-fed (RAC) and non-ractopamine fed (CON) groups. The differentially abundant proteins were over-abundant in RAC and were related to muscle structure development (F-actin-capping protein subunit beta-2 and PDZ and LIM domain protein-3), chaperone (heat shock protein beta-1), oxygen transportation (myoglobin), and glycolysis (L-lactate dehydrogenase A chain). These findings indicated that ractopamine influences the abundance of proteins associated with ...


Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares Jan 2018

Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a type of plant defense mechanism that is induced after a localized infection and confers broad-spectrum immunity against related or unrelated pathogens. During SAR, a number of chemical signals and proteins generated at the site of primary infection travel to the uninfected tissues and are thought to alert the distal sites against secondary infections. Glycerol-3-phosphate (G3P) is one of the chemical signals that play an important role in SAR. G3P is synthesized in the cytosol and chloroplasts via the enzymatic activities of G3P Dehydrogenase (G3Pdh) or Glycerol Kinase (GK). Interestingly, a mutation in three of ...


Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang Jan 2018

Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang

Theses and Dissertations--Molecular and Cellular Biochemistry

Signaling scaffolds are critical for the correct spatial organization of enzymes within the ERK1/2 signaling pathway and proper transmission of intracellular information. However, mechanisms that control molecular dynamics within scaffolding complexes, as well as biological activities regulated by the specific assemblies, remain unclear.

The scaffold protein Shoc2 is critical for transmission of the ERK1/2 pathway signals. Shoc2 accelerates ERK1/2 signaling by integrating Ras and RAF-1 enzymes into a multi-protein complex. Germ-line mutations in shoc2 cause Noonan-like RASopathy, a disorder with a wide spectrum of developmental deficiencies. However, the physiological role of Shoc2, the nature of ERK1/2 ...


Protein Engineering In The Study Of Protein Labeling And Degradation, Xinyi Zhang Jan 2018

Protein Engineering In The Study Of Protein Labeling And Degradation, Xinyi Zhang

Theses and Dissertations--Chemistry

Proteins are large macromolecules that play important roles in nature. With the development of modern molecular biology techniques, protein engineering has emerged as a useful tool and found many applications in areas ranging from food industry, environmental protection, to medical and life science. Biomimetic membrane incorporates biological elements, such as proteins, to form membranes that mimic the high specificity and conductance of natural biological membranes. For any application involving the usage of proteins, the first barrier is always the production of proteins with sufficient stability, and the incorporation of proteins into the artificial matrix. This thesis contains two major parts ...


Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan Jan 2018

Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan

Theses and Dissertations--Pharmacy

A-102395 is a member of the capuramycin family of antibiotics which was isolated from the culture broth of Amycolatopsis sp. SANK 60206. A-102339 is structurally classified as a nucleoside antibiotic, which like all members of the capuramycin family, inhibits bacterial MraY (translocase I) with IC50 of 11 nM which is the lowest among the capuramycin family. A semisynthetic derivative of capuramycin is currently in clinical trials as an antituberculosis antibiotic, suggesting high potential for using A-102395 as a starting point for new antibiotic discovery. In contrast to other capuramycins, A-102395 has a unique arylamine-containing polyamide side chain. The biosynthetic ...


Investigation Of The Physiological Role Of Rin Gtpase In Cell Death, Axonal Injury, And Inflammation Following Traumatic Brain Injury, Megan Pannell Jan 2017

Investigation Of The Physiological Role Of Rin Gtpase In Cell Death, Axonal Injury, And Inflammation Following Traumatic Brain Injury, Megan Pannell

Theses and Dissertations--Molecular and Cellular Biochemistry

Traumatic brain injury (TBI) is a progressive disorder, in which the primary injury results in the initiation of a complex cascade of secondary biochemical and metabolic changes resulting in lasting neurological dysfunction and cognitive impairment. The heterogeneous nature of the disease has complicated the development of pharmacological agents to improve the outcomes of TBI; to date, no therapeutic treatment has been shown to be effective in clinical trials. Treatments targeting multiple secondary outcomes (cell death, axonal degeneration, and inflammation) may provide enhanced therapeutic efficacy following TBI.

Small Ras family GTP-binding proteins govern diverse cellular processes by directing the relay of ...


Rad Gtpase: Identification Of Novel Regulatory Mechanisms And A New Function In Modulation Of Bone Density And Marrow Adiposity, Catherine Nicole Kaminski Withers Jan 2017

Rad Gtpase: Identification Of Novel Regulatory Mechanisms And A New Function In Modulation Of Bone Density And Marrow Adiposity, Catherine Nicole Kaminski Withers

Theses and Dissertations--Molecular and Cellular Biochemistry

The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates voltage-dependent calcium channel function. Given its expression in both excitable and non-excitable cell types, the control mechanisms for Rad regulation and the potential for novel functions for Rad beyond calcium channel modulation are open questions. Here we report a novel interaction between Rad and Enigma, a scaffolding protein that also binds to the E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1). Overexpression of Smurf1, but not of a ...


Investigation Of The Mechanism Of Action For Mithramycin And The Biosynthesis Of L-Rednose In Saquayamycins, Stevi Weidenbach Jan 2017

Investigation Of The Mechanism Of Action For Mithramycin And The Biosynthesis Of L-Rednose In Saquayamycins, Stevi Weidenbach

Theses and Dissertations--Pharmacy

Natural products continue to be a major chemical lead matter for drug discovery due to their diverse chemical structures and bioactivities. Clinically significant natural products include anti-cancer and anti-infective compounds and while many more of these compounds show promising bioactivity, their clinical relevance is often limited by toxicity or poor solubility. Combinatorial biosynthesis can be employed to modify existing chemical scaffolds towards reducing these limitations. To fully take advantage of these biochemical tools, it is important to understand the biosynthesis and mechanism of action of the molecules.

Saccharides in glycosylated natural products provide specific interactions with cellular targets and are ...


Illuminate The Pathway Of Membrane Protein Association And Degradation, Zhaoshuai Wang Jan 2017

Illuminate The Pathway Of Membrane Protein Association And Degradation, Zhaoshuai Wang

Theses and Dissertations--Chemistry

Escherichia coli transporter protein AcrB and its homologues are the inner membrane components of the Resistance-Nodulation-Division (RND) family efflux pumps in Gram-negative bacteria. It is well accepted that soluble proteins are only marginally stable, but such insight is missing for membrane proteins. The lack of stability data, including thermodynamic stability and oligomer association affinity is a result of intrinsic difficulties in working with membrane proteins. In addition, the degradation of soluble proteins in E. coli has been extensively studied whereas the degradation process of membrane proteins remains unclear. A focus of my thesis is the validation and development of methods ...


Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao Jan 2016

Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao

Theses and Dissertations--Pharmacy

Biological functions such as cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging, and cell entry all involve biomotor-driven DNA translocation. In the past, the ubiquitous biological nanomotors were classified into two categories: linear and rotation motors. In 2013, we discovered a third type of biomotor, revolving motor without rotation. The revolving motion is further found to be widespread among many biological systems. In addition, the detailed sequential action mechanism of the ATPase ring in the phi29 dsDNA packaging motor has been elucidated: ATP binding induces a conformational entropy alternation of ATPase ...


Functional Roles For Post-Translational Modifications Of T-Snares In Platelets, Jinchao Zhang Jan 2016

Functional Roles For Post-Translational Modifications Of T-Snares In Platelets, Jinchao Zhang

Theses and Dissertations--Molecular and Cellular Biochemistry

Platelets affect vascular integrity by secreting a host of molecules that promote hemostasis and its sequela. Given its importance, it is critical to understand how platelet exocytosis is controlled. Post-translational modifications, such as phosphorylation and acylation, have been shown to affect signaling pathways and platelet function. In this dissertation, I focus on how these modifications affect the t-SNARE proteins, SNAP-23 and syntaxin-11, which are both required for platelet secretion. SNAP-23 is regulated by phosphorylation. Using a proteoliposome fusion assay, I demonstrate that purified IκB Kinase (IKK) phosphorylated SNAP-23, which increased the initial rates of SNARE-mediated liposome fusion. SNAP-23 mutants containing ...


Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy Jan 2016

Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a form of inducible defense response triggered upon localized infection that confers broad-spectrum disease resistance against secondary infections. Several factors are known to regulate SAR and these include phenolic phytohormone salicylic acid (SA), phosphorylated sugar glycerol-3-phosphate (G3P), and dicarboxylic acid azelaic acid (AzA). This study evaluated a role for free radicals nitric oxide (NO) and reactive oxygen species (ROS) in SAR. Normal accumulation of both NO and ROS was required for normal SAR and mutations preventing NO/ROS accumulation and/or biosynthesis compromised SAR. A role for NO and ROS was further established using pharmacological ...


Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony Jan 2016

Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony

Theses and Dissertations--Pharmacy

Proteasome inhibitors bortezomib and carfilzomib are FDA-approved anticancer agents that have contributed to significant improvements in treatment outcomes. However, the eventual onset of acquired resistance continues to limit their clinical utility, yet a clear consensus regarding the underlying mechanisms has not been reached.

Bortezomib and carfilzomib are known to target both the constitutive proteasome and the immunoproteasome, two conventional proteasome subtypes comprising distinctive sets of catalytic subunits. While it has become increasingly evident that additional, ‘intermediate’ proteasome subtypes, which harbor non-standard mixtures of constitutive proteasome and immunoproteasome catalytic subunits, represent a considerable proportion of the proteasome population in many cell ...


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased ...


Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen Jan 2015

Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen

Theses and Dissertations--Pharmacy

Natural products provide some of the most potent anticancer agents and offer a template for new drug design or improvement with the advantage of an enormous chemical space. The overall goal of this thesis research is to enhance the chemical space of two natural products in order to generate novel drugs with better in vivo bioactivities than the original natural products.

Polycarcin V (PV) is a gilvocarcin-type antitumor agent with similar structure and comparable bioactivity with the principle compound of this group, gilvocarcin V (GV). Modest modifications of the polyketide-derived tetracyclic core of GV had been accomplished, but the most ...


Physical Interactions Between Neuropilin And Vegfrs, Integrins In Regulating Endothelial Cell Functions, Xiaobo Li Jan 2015

Physical Interactions Between Neuropilin And Vegfrs, Integrins In Regulating Endothelial Cell Functions, Xiaobo Li

Theses and Dissertations--Molecular and Cellular Biochemistry

The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is ligand-dependent cellular adhesion and migration, where it controls the multistep process of cellular motility through integration of ligand binding, receptor coupling and signaling via the coordinated action of its extracellular and intracellular domains. While Nrp regulates cellular adhesion and motility in the cardiovascular and nervous systems under physiological conditions, the emerging pathological role of Nrp in tumor cell migration and metastasis has been identified and provides motivation for continued efforts toward ...


Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins Jan 2014

Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch is a water-insoluble glucose biopolymer used as an energy cache in plants and is synthesized and degraded in a diurnal cycle. Reversible phosphorylation of starch granules regulates the solubility and, consequentially, the bioavailability of starch glucans to degradative enzymes. Glucan phosphatases release phosphate from starch glucans and their activity is essential to the proper diurnal metabolism of starch. Previously, the structural basis of glucan phosphatase activity was entirely unknown. The work in this dissertation outlines the structural mechanism of activity of two plant glucan phosphatases called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). The crystal structures of SEX4 ...


Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker Jan 2014

Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker

Theses and Dissertations--Molecular and Cellular Biochemistry

Neuropilin (Nrp) is an essential cell surface receptor with dual functionality in the cardiovascular and nervous systems. The first identified Nrp-ligand family was the Semaphorin-3 (Sema3) family of axon repulsion molecules. Subsequently, Nrp was found to serve as a receptor for the vascular endothelial growth factor (VEGF) family of pro-angiogenic cytokines. In addition to its physiological role, VEGF signaling via Nrp directly contributes to cancer stemness, growth, and metastasis. Thus, the Nrp/VEGF signaling axis is a promising anti-cancer therapeutic target. Interestingly, it has recently been shown that Sema3 and VEGF are functionally opposed to one another, with Sema3 possessing ...


Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips Jan 2014

Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips

Theses and Dissertations--Molecular and Cellular Biochemistry

The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote’s life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg- mutants, one L. donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild-type but similar in size to LPG from wild-type from metacyclic (stationary) phase.

Structural analysis of ...


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison of ...


Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee Jan 2014

Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee

Theses and Dissertations--Nutritional Sciences

DNA mismatch repair (MMR) is a highly conserved pathway that maintains genomic stability primarily by correcting mismatches generated during DNA replication. MMR deficiency leads to microsatellite instability (MSI), which is a hallmark of HNPCC (Hereditary Nonpolyposis Colorectal Cancer). Human mismatch repair is initiated by MutSα, a heterodimer of MSH2 and MSH6 subunits. Mismatch binding by MutSα triggers a series of downstream MMR events including interacting and communicating with other MMR proteins. The ATPase domain of MutSα is situated in the C-termini of its both subunits, and ATP binding is required for dissociation of MutSα from a mismatch. In eukaryotic cells ...


Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell Jan 2014

Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell

Theses and Dissertations--Plant and Soil Sciences

Squalene synthase (SS) is an essential enzyme in eukaryotic systems responsible for an important branch point in isoprenoid metabolism that leads to sterol formation. The mechanistic complexity of SS has made it a difficult enzyme to study. The green alga Botryococcus braunii race B possesses several squalene synthase-like (SSL) enzymes that afford a unique opportunity to study the complex mechanism of triterpene biosynthesis. SSL-1 catalyzes presqualene diphosphate (PSPP) formation, which can either be converted to squalene by SSL-2 or botryococcene by SSL-3. A rationally designed mutant study of B. braunii squalene synthase (BbSS) and SSL-3 was conducted to understand structure-function ...


Stability Studies Of Membrane Proteins, Cui Ye Jan 2014

Stability Studies Of Membrane Proteins, Cui Ye

Theses and Dissertations--Chemistry

The World Health Organization has identified antimicrobial resistance as one of the top three threats to human health. Gram-negative bacteria such as Escherichia coli are intrinsically more resistant to antimicrobials. There are very few drugs either on the market or in the pharmaceutical pipeline targeting Gram-negative pathogens. Two mechanisms, the protection of the outer membrane and the active efflux by the multidrug transporters, play important roles in conferring multidrug resistance to Gram-negative bacteria. My work focuses on two main directions, each aligning with one of the known multidrug resistance mechanisms.

The first direction of my research is in the area ...


Bed Bugs Evolved Unique Adaptive Strategy To Resist Pyrethroid Insecticides, Fang Zhu, Hemant Gujar, Jennifer R. Gordon, Kenneth F. Haynes, Michael F. Potter, Subba R. Palli Mar 2013

Bed Bugs Evolved Unique Adaptive Strategy To Resist Pyrethroid Insecticides, Fang Zhu, Hemant Gujar, Jennifer R. Gordon, Kenneth F. Haynes, Michael F. Potter, Subba R. Palli

Entomology Faculty Publications

Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr) is possible. This strategy evolved in bed bugs is based on their unique morphological, physiological and behavioral characteristics and has ...