Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Denver

Electronic Theses and Dissertations

Theses/Dissertations

MicroRNA

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Cooperative Regulation Of Translational Repression By Fmrp And The Mirna Pathway, Navneeta Kaul Aug 2018

Cooperative Regulation Of Translational Repression By Fmrp And The Mirna Pathway, Navneeta Kaul

Electronic Theses and Dissertations

Fragile X syndrome (FXS) is the most common inherited monogenic cause of intellectual disability. FXS patients exhibit social and language deficits, hyperactivity, seizures, growth abnormalities, macroorchidism, anxiety, and epilepsy. FXS is caused by the transcriptional silencing of the fragile X mental retardation gene 1 (Fmr1), resulting in the loss of the fragile X mental retardation protein (FMRP). FMRP is a selective mRNA binding protein that plays a role in translation repression. Studies suggest that FMRP utilizes the miRNA pathway to repress translation of its target mRNAs through an unknown mechanism. The aim of my thesis is to investigate …


Acute Synaptic Activity Causes Differential Mirna Expression In The Drosophila Melanogaster Larval Central Nervous System, Robert Ian Sand Jan 2011

Acute Synaptic Activity Causes Differential Mirna Expression In The Drosophila Melanogaster Larval Central Nervous System, Robert Ian Sand

Electronic Theses and Dissertations

The primary goal of this thesis was to determine if spaced synaptic stimulation induced the differential expression of microRNAs (miRNAs) in the Drosophila melanogaster central nervous system (CNS). Prior to attaining this goal, we needed to identify and validate a spaced stimulation paradigm that could induce the formation of new synaptic growth at a model synapse, the larval neuromuscular junction (NMJ). Both Channelrhodopsin- and high potassium-based stimulation paradigms adapted from (Ataman, et al. 2008) were tested. Once validation of these paradigms was complete, we sought to characterize the miRNA expression profile of the larval CNS by miRNA array. Following attainment …