Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Ubiquitin

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Molecular Biology

Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler Mar 2024

Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler

Department of Biochemistry and Molecular Biology Faculty Papers

In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site …


The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper May 2023

The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

The Cdk8 Kinase Module is a dissociable regulator of cellular stress response genes, with degradation of its components Med13 and cyclin C eventually determining cell fate decisions such as engaging cell survival or cell death mechanisms. We aimed to explore the roles of ubiquitin in degradation of the Cdk8 Kinase Module following nitrogen starvation, with respect to the potential involvement of deubiquitinating enzyme Doa4, lysine linkage at position K63, and E2 ubiquitin conjugating enzymes Ubc4 and Ubc5. We utilized Western blot analysis to observe nitrogen starvation-induced degradation of Med13-HA in wild-type, doa4 mutant, and K63R yeast strains; degradation of cyclin …


Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty Jan 2023

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty

Dartmouth College Ph.D Dissertations

Cilia are structures present on most eukaryotic cells which provide important signaling and motile components to cells from early development to fully differentiated and matured cells. Regulation of these structures is critical to proper functioning of the cell and is known to be tied to the cell cycle. Preparation for ciliary assembly following cell cycle exit and ciliary disassembly following cell cycle reentry requires components throughout the cell body and within the cilium to facilitate this process. Here I identify how the cell adapts to ensure modifications to cilia occur for assembly or disassembly using the model organism Chlamydomonas reinhardtii. …


Characterizing The Multifaceted Roles Of The Proteasomal Deubiquitinase Uch37 In Proteostasis, Heather A. Bisbee Oct 2022

Characterizing The Multifaceted Roles Of The Proteasomal Deubiquitinase Uch37 In Proteostasis, Heather A. Bisbee

Doctoral Dissertations

Cellular protein pools are maintained through the biological processes of synthesis, degradation and quality control. As the dysregulation of these processes has been implicated in diseases such as neurodegeneration and cancer, understanding their functions is critical for drug development. Modification of proteins with ubiquitin may direct them to the proteasome, a large cellular protease complex, for degradation. Yet, the proteasome contains three deubiquitinating enzymes (DUBs) which remove ubiquitin from proteins, potentially altering their fate. As each DUB recognizes specific ubiquitin linkages and architectures, their activity may regulate how the proteasome handles substrates in dynamic cellular contexts. In this work, we …


A Tale Of Two-Hybrids: Investigating The Interactomes Of Cullin-Associated Proteins, Elyse Reitter Feb 2022

A Tale Of Two-Hybrids: Investigating The Interactomes Of Cullin-Associated Proteins, Elyse Reitter

Dissertations and Theses

Cul3 is the major component of an E3 ligase in human cells. Cul3 was initially identified in the Singer lab as a protein that binds and degrades cyclin E, and subsequent studies have shown it to be part of a complex that is involved in a multitude of biological functions. The nature of this complex, its constituents, its regulation, and its dynamics is just beginning to be understood. The research presented here utilizes a series of two hybrid screens to identify families of interactomes with Cul3 at the center. This information will complement other work in the lab in which …


Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry Dec 2021

Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry

Theses & Dissertations

DNA repair pathways that recognize and remove damaged DNA are vital for maintenance of genomic stability and prevention of tumorigenesis. Conversely, these pathways may be robust in tumor cells, thus diminishing the anti-cancer potential of available therapies. DNA-protein crosslinks (DPCs) are particularly deleterious DNA adducts that occur when proteins become irreversibly covalently bound to the DNA. DPCs represent a diverse group of lesions, as any protein can be crosslinked to the DNA duplex by non-specific crosslinking agents like reactive aldehydes and radiation. Additionally, functional DNA-binding proteins such as topoisomerases may become permanently crosslinked to DNA ends by abortive enzymatic processes …


Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola Sep 2021

Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola

Dissertations and Theses

Cul3-based E3 ligase is responsible for regulating a variety of cellular pathways, many of which are known to have profound effects on the proper function of multicellular organisms. Although progress over the past years has been truly impressive, our understanding of the mechanisms of E2 recruitment and selection by the BCR complex and all the roles that Cul3 plays on kidneys remains in its infancy. To explore these aspects, this dissertation aims to analyze the Cul3 complex using two different approaches: (1) We used the powerful tool of chimeric analysis to map the essential domain binding characteristics of Cul3 taking …


Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley May 2020

Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley

Senior Honors Projects, 2020-current

Ubiquitin-fold modifier 1 (Ufm1) is a member of the Ubiquitin (Ub) family of proteins whose primary function is degradation of proteins through a sequential mechanism of chemical reactions. Though Ufm1’s specific roles are largely unknown, this family of proteins has shown to play a part in a wide variety of processes, including regulation of the cell cycle1, secretory functions of cells2,3, and blood clotting4. Ufm1’s mechanism of action proceeds with the aid of three enzymes: an E1, E2, and E3. Uba5 is the E1 activating enzyme that is specific to Ufm1, and its mechanism of …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson May 2018

Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson

MSU Graduate Theses

Rad23 is a protein involved in both nucleotide excision repair (NER) and proteasome-mediated degradation, and has been suggested to facilitate interactions between these two pathways. The model organism Tetrahymena thermophila, which has a transcriptionally silent micronucleus, provides a useful platform for studying the role of Rad23 in global genome NER (GG-NER). However, the ectopic expression systems used thus far in T. thermophila to study Rad23 are repressed by UV light and do not account for the background expression of endogenous RAD23; these phenomena prevent insightful gains to the true dynamics of Rad23. In this thesis, endogenous tagging …


Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai May 2017

Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce diverse extracellular signals like hormones, neurotransmitters, and photons to specific cellular responses through heterotrimeric G proteins. G proteins activate numerous effectors and signal transduction pathways, and therefore the regulation of G proteins is crucial for faithful propagation of specific cellular and physiological responses. A better understanding of the mechanisms that regulate G proteins should provide new insight into signaling pathways that govern healthy and disease states, and also provide opportunities for discovery of novel therapeutic targets.Regulator of G protein signaling (RGS) proteins are crucial regulators of G proteins, for they control amplitude and duration of …


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence …


Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan Apr 2016

Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan

USF Tampa Graduate Theses and Dissertations

Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. This study explored several avenues to ultimately expand upon our understanding of RSV pathogenesis at the protein level. Evaluation of RSV intrinsic protein disorder increased the relatively limited description of the RSV structure-function relationship. Global proteomics analysis provided direction for further hypothesis-driven investigation of host pathways altered by RSV infection, specifically the interaction between the RSV NS2 protein and the host ubiquitin system. NS2 primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. The goal …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar Aug 2015

Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ubiquitin specific proteases (USPs) are a class of enzymes involved in myriad cellular processes. One USP of great interest due to its oncogenic properties is USP7. In normal conditions USP7 is closely regulated due to its responsibility for destabilizing the tumor suppressor, p53, through the deubiquitination of MDM2. In multiple myeloma cases, it appears the regulation of USP7 subsides, as it is largely overexpressed, leading to the inappropriate degradation of p53. Inhibition of USP7 could, therefore, prove a viable target for cancer therapy. A greater understanding of USP7’s function and structure can lead to more insight into how this enzyme …


Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg May 2015

Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg

Scholars Week

In C. elegans, the glutamate receptor GLR-1 functions in the nervous system to decode environmental stimuli and sensory experiences, and to regulate locomotion and the formation of long-term memory. C. elegans GLR-1 is homologous to mammalian glutamate receptors, and we can use this simple organism as a system to better understand the life cycle of human receptors (1). Because GLR-1 is a membrane protein, it is first assembled in the interior of a neuron, and then it is transported to the membrane at the surface of the cell so that it can receive chemical signals (glutamate) from the environment. Currently, …


Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres Jan 2015

Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres

USF Tampa Graduate Theses and Dissertations

Fanconi anemia (FA) is a genome instability syndrome that is clinically manifested by bone marrow failure, congenital defects, and elevated cancer susceptibility. The FA pathway is known to regulate the repair of DNA interstrand crosslinks in part through DNA homologous recombination (HR) repair. Up to today 16 FA proteins have been discovered that may participate in the common pathway. Cells that have mutations in the FA genes are hypersensitive to DNA damaging agents and display chromosome instability. A key regulatory event in the FA pathway is monoubiquitination of FANCD2-FANCI heterodimer that is mediated by a multi-component E3 ubiquitin ligase complex …


Jab1 Negatively Regulates Pten And Promotes Resistance To Trastuzumab In Her2-Positive Breast Cancer, Thuy T. Vu Dec 2014

Jab1 Negatively Regulates Pten And Promotes Resistance To Trastuzumab In Her2-Positive Breast Cancer, Thuy T. Vu

Dissertations & Theses (Open Access)

HER2-positive breast cancer, which is characterized by the over-expression of the HER2 onco-protein, accounts for approximately 20% of all breast cancer cases. Trastuzumab (Herceptin), the first targeted therapy approved for HER2-positive disease, potently prevents the activation of signaling pathways downstream of HER2 and significantly improves patients’ outcomes. However, resistance to trastuzumab is inevitable; such resistance can occur through reduced expression of PTEN protein.

Jab1 is over-expressed in 50% of primary cancers and 90% of metastatic tumors. Our lab previously showed that depletion of Jab1 in combination with trastuzumab treatment up-regulated PTEN in mouse xenografts refractory to trastuzumab. PTEN was not …


Characterization Of The Coca Chemokine Receptor Four Agonist Activity Of Ubiquitin, Daniel M. Staren Jan 2012

Characterization Of The Coca Chemokine Receptor Four Agonist Activity Of Ubiquitin, Daniel M. Staren

Master's Theses

Ubiquitin has previously been identified as another natural agonist of CXC chemokine receptor 4 (CXCR4). In addition, recent evidence suggests that ubiquitin may activate CXCR4 through a binding site on the receptor, which is distinct from the binding site for the cognate ligand stromal cell-derived factor (SDF)-1α. The cellular consequences of ubiquitin induced CXCR4 activation, however, are still poorly defined and a side-by-side comparison of CXCR4 mediated functions after activation with SDF-1α and ubiquitin is lacking. Such information will be instrumental to better understand the physiological function of CXCR4 and to further define its role as a therapeutic target in …


Artemis Interacts With The Cul4a Ubiquitin E3 Ligase Complex And Regulates The Cell Cycle Progression, Yiyi Yan Aug 2010

Artemis Interacts With The Cul4a Ubiquitin E3 Ligase Complex And Regulates The Cell Cycle Progression, Yiyi Yan

Dissertations & Theses (Open Access)

Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as …