Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Identification And Functional Characterization Of The Zebrafish Gene Quetschkommode (Que), Timo Friedrich Sep 2012

Identification And Functional Characterization Of The Zebrafish Gene Quetschkommode (Que), Timo Friedrich

Open Access Dissertations

Locomotion in vertebrates depends on proper formation and maintenance of neuronal networks in the hind-brain and spinal cord. Malformation or loss of factors required for proper maintenance of these networks can lead to severe neurodegenerative diseases limiting or preventing locomotion. A powerful tool to investigate the genetic and cellular requirements for development and/or maintenance of these networks is a collection of zebrafish mutants with defects in motility. The zebrafish mutant quetschkommode (que) harbors a previously unknown gene defect leading to abnormal locomotor behavior. Here I show that the que mutants display a seizure-like behavior starting around four days post fertilization …


Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin, Kedryn K. Baskin May 2012

Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin, Kedryn K. Baskin

Dissertations & Theses (Open Access)

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of …