Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2010

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 54

Full-Text Articles in Molecular Biology

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou Dec 2010

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one …


Development Of A Genetic Modification System In Clostridium Scatologenes Atcc 25775 For Generation Of Mutants, Prasanna Tamarapu Parthasarathy Dec 2010

Development Of A Genetic Modification System In Clostridium Scatologenes Atcc 25775 For Generation Of Mutants, Prasanna Tamarapu Parthasarathy

Masters Theses & Specialist Projects

3-Methyl indole (3-MI) is a malodorant in food and animal waste and Clostridium scatologenes ATCC 25775 is the model organism for the study of 3-MI production. 3-MI is an anaerobic degradation product of L-tryptophan and can cause pulmonary disorders and death in cattle and goats. To elucidate the 3-MI biosynthesis pathway and the underlying genes, it is necessary to develop a system to allow genetic modification in Clostridium scatologenes ATCC 25775. Bacteriophages and transposons are useful tools to achieve this goal. Isolation of Clostridium scatologenes ATCC 25775 bacteriophage was attempted by prophage induction and enrichments using environmental sources. To induce …


Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd Nov 2010

Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd

Dartmouth Scholarship

Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. ntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate.


An Archaeal Trna-Synthetase Complex That Enhances Aminoacylation Under Extreme Conditions, Vlatka Godinic-Mikulcic, Jelena Jaric, Corinne D. Hausmann, Michael Ibba, Ivana Weygand-Durasevic Nov 2010

An Archaeal Trna-Synthetase Complex That Enhances Aminoacylation Under Extreme Conditions, Vlatka Godinic-Mikulcic, Jelena Jaric, Corinne D. Hausmann, Michael Ibba, Ivana Weygand-Durasevic

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (KD) of 250 nm. Formation of the MtSerRS·MtArgRS complex …


Resonance Assignments And Secondary Structure Predictions Of The As(Iii) Metallochaperone Arsd In Solution, Jun Ye, Yanan He, Jack Skalicky, Barry P. Rosen, Timothy L. Stemmler Nov 2010

Resonance Assignments And Secondary Structure Predictions Of The As(Iii) Metallochaperone Arsd In Solution, Jun Ye, Yanan He, Jack Skalicky, Barry P. Rosen, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published …


Virulence Of An Emerging Respiratory Pathogen, Genus Pandoraea, In Vivo And Its Interactions With Lung Epithelial Cells, Gillian Herbert, Anne Costello, Lydia Fabunmi, Kirsten Schaffer, Kevin Kavanagh, Emma M. Caraher, Máire Callaghan, Siobhan Mcclean Nov 2010

Virulence Of An Emerging Respiratory Pathogen, Genus Pandoraea, In Vivo And Its Interactions With Lung Epithelial Cells, Gillian Herbert, Anne Costello, Lydia Fabunmi, Kirsten Schaffer, Kevin Kavanagh, Emma M. Caraher, Máire Callaghan, Siobhan Mcclean

Articles

Pandoraea species have emerged as opportunistic pathogens among cystic fibrosis (CF) and non-CF patients. Pandoraea pulmonicola is the predominant Pandoraea species among Irish CF patients. The objective of this study was to investigate the pathogenicity and potential mechanisms of virulence of Irish P. pulmonicola isolates and strains from other Pandoraea species. Three patients from whom the P. pulmonicola isolates were isolated have since died. The in vivo virulence of these and other Pandoraea strains was examined by determining the ability to kill Galleria mellonella larvae. The P. pulmonicola strains generally were the most virulent of the species tested, with three …


Scoring Function To Predict Solubility Mutagenesis, Ye Tian, Christopher Deutsch, Bala Krishnamoorthy Oct 2010

Scoring Function To Predict Solubility Mutagenesis, Ye Tian, Christopher Deutsch, Bala Krishnamoorthy

Chemistry Faculty Publications and Presentations

Background: Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT) protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results: We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to …


The Expression Patterns Of Minor Fibrillar Collagens During Development In Zebrafish, Ming Fang, Jason S. Adams, B. Lane Memahhan, Raquel J. Brown, Julia Oxford Oct 2010

The Expression Patterns Of Minor Fibrillar Collagens During Development In Zebrafish, Ming Fang, Jason S. Adams, B. Lane Memahhan, Raquel J. Brown, Julia Oxford

Biomolecular Research Center Publications and Presentations

Minor fibrillar collagens are recognized as the organizers and nucleators during collagen fibrillogenesis but likely serve additional functions. The minor fibrillar collagens include collagens type V and type XI. Mutations of collagen type V and XI can cause Ehlers Danlos, Stickler's, and Marshall's syndromes in human. We have characterized the spatiotemporal expression patterns of Col11a1, Col11a2, Col5a1 as well as Col5a3 in zebrafish embryos by in situ hybridization. Col5a1 is expressed in developing somites, neural crest, the head mesenchyme, developing cranial cartilage, pharyngeal arches and vertebrae. Col5a3 is detected in the notochord, mesenchyme cells in the eyes and lens. Both …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


Aromatic Acid Metabolites Of Escherichia Coli K-12 Can Induce The Marrab Operon, Lon Chubiz, Christopher Rao Sep 2010

Aromatic Acid Metabolites Of Escherichia Coli K-12 Can Induce The Marrab Operon, Lon Chubiz, Christopher Rao

Biology Department Faculty Works

MarR is a key regulator of the marRAB operon involved in antibiotic resistance and solvent stress tolerance in Escherichia coli. We show that two metabolic intermediates, 2,3-dihydroxybenzoate and anthranilate, involved in enterobactin and tryptophan biosynthesis, respectively, can activate marRAB transcription. We also found that a third intermediate involved in ubiquinone biosynthesis, 4-hydroxybenzoate, activates marRAB transcription in the absence of TolC. Of the three, however, only 2,3-dihydroxybenzoate directly binds MarR and affects its activity.


Frataxin And Mitochondrial Fes Cluster Biogenesis, Timothy L. Stemmler, Emmanuel Lesuisse, Debumar Pain, Andrew Dancis Aug 2010

Frataxin And Mitochondrial Fes Cluster Biogenesis, Timothy L. Stemmler, Emmanuel Lesuisse, Debumar Pain, Andrew Dancis

Biochemistry and Molecular Biology Faculty Publications

Friedreich’s ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in Fe-S cluster assembly in mitochondria. Fe-S clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multi-step and multi-subunit mitochondrial machinery that includes a scaffold protein Isu for assembling a protein bound Fe-S cluster intermediate. Frataxin interacts with Isu, iron, and with the cysteine desulfurase Nfs1 that supplies sulfur, thus placing it at the center of mitochondrial Fe-S cluster biosynthesis.


Bilinear Programming And Protein Structure Alignment, J. Cain, D. Kamenetsky, N. Lavine Aug 2010

Bilinear Programming And Protein Structure Alignment, J. Cain, D. Kamenetsky, N. Lavine

Mathematical Sciences Technical Reports (MSTR)

Proteins are a primary functional component of organic life, and understanding their function is integral to many areas of research in biochemistry. The three-dimensional structure of a protein largely determines this function. Protein structure alignment compares the structure of a protein with known function to that of a protein with unknown function. A protein’s three-dimensional structure can be transformed through a smooth piecewise-linear sigmoid function to a real symmetric contact matrix that represents the functional significance of certain parts of the protein. We address the protein alignment problem as a minimization of the 2-norm difference of two proteins’ contact matrices. …


Poxa, Yjek And Elongation Factor P Coordinately Modulate Virulence And Drug Resistance In Salmonella Enterica, William Wiley Navarre, Shicong Zou, Hervé Roy, Jinglin Lucy Xie, Alexei Savchenko, Alexander Singer, Elena Edvokimova, Lynne R. Prost, Runjun Kumar, Michael Ibba, Ferric C. Fang Jul 2010

Poxa, Yjek And Elongation Factor P Coordinately Modulate Virulence And Drug Resistance In Salmonella Enterica, William Wiley Navarre, Shicong Zou, Hervé Roy, Jinglin Lucy Xie, Alexei Savchenko, Alexander Singer, Elena Edvokimova, Lynne R. Prost, Runjun Kumar, Michael Ibba, Ferric C. Fang

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-β-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with …


Release Of Hmgb1 In Response To Pro-Apoptotic Glioma Killing Strategies: Efficacy And Neurotoxicity, Marianela Candolfi, Kader Yagiz, David Foulad, Gabrielle Alzadeh, Matthew Tesarfreund, Akm Ghulam Muhammad, Mariana Puntel, Kurt Kroeger, Chunyan Liu, Sharon Lee, James Curtin, Gwendalyn D. King, Jonathan Lerner, Katsuaki Sato, Yohei Mineharu, Weidong Xiong, Pedro R. Lowenstein, Maria Castro Jul 2010

Release Of Hmgb1 In Response To Pro-Apoptotic Glioma Killing Strategies: Efficacy And Neurotoxicity, Marianela Candolfi, Kader Yagiz, David Foulad, Gabrielle Alzadeh, Matthew Tesarfreund, Akm Ghulam Muhammad, Mariana Puntel, Kurt Kroeger, Chunyan Liu, Sharon Lee, James Curtin, Gwendalyn D. King, Jonathan Lerner, Katsuaki Sato, Yohei Mineharu, Weidong Xiong, Pedro R. Lowenstein, Maria Castro

Articles

Purpose In preparation for a Phase I clinical trial utilizing a combined cytotoxic/immunotherapeutic strategy using adenoviruses expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor killing agent in relation to efficacy and safety when compared to other pro-apoptotic approaches. Experimental Design and Results The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the pro-apoptotic cytokines (TNF-α, TRAIL, FasL), alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. In rats bearing large GBMs (day 9), the …


Rna Processing Of Nitrogenase Transcripts In The Cyanobacterium Anabaena Variabilis, Justin Ungerer, Brenda Pratte, Teresa Thiel Jul 2010

Rna Processing Of Nitrogenase Transcripts In The Cyanobacterium Anabaena Variabilis, Justin Ungerer, Brenda Pratte, Teresa Thiel

Biology Department Faculty Works

Little is known about the regulation of nitrogenase genes in cyanobacteria. Transcription of the nifH1 and vnfH genes, encoding dinitrogenase reductases for the heterocyst-specific Mo-nitrogenase and the alternative V-nitrogenase, respectively, was studied by using a lacZ reporter. Despite evidence for a transcription start site just upstream of nifH1 and vnfH, promoter fragments that included these start sites did not drive the transcription of lacZ and, for nifH1, did not drive the expression of nifHDK1. Further analysis using larger regions upstream of nifH1 indicated that a promoter within nifU1 and a promoter upstream of nifB1 both contributed to expression of nifHDK1, …


Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana Jun 2010

Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that, in vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller May 2010

Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller

Life Sciences Faculty Research

BACKGROUND:

Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature.

RESULTS:

We have built the MimoSA application for minimotif annotation. The application supports management of …


Intrinsic Contact Geometry Of Protein Dynamics, Yosi Shibberu, Allen Holder, David Cooper May 2010

Intrinsic Contact Geometry Of Protein Dynamics, Yosi Shibberu, Allen Holder, David Cooper

Mathematical Sciences Technical Reports (MSTR)

We introduce a new measure for comparing protein structures that is especially applicable to analysis of molecular dynamics simulation results. The new measure generalizes the widely used root-mean-squared-deviation (RMSD) measure from three dimensional to n-dimensional Euclidean space, where n equals the number of atoms in the protein molecule. The new measure shows that despite significant fluctuations in the three dimensional geometry of the estrogen receptor protein, the protein's intrinsic contact geometry is remarkably stable over nanosecond time scales. The new measure also identifies significant structural changes missed by RMSD for a residue that plays a key biological role in …


Dopaminergic Innervation Of The Subventricular Zone In The Murine Brain, Linda Beth Drozdowicz May 2010

Dopaminergic Innervation Of The Subventricular Zone In The Murine Brain, Linda Beth Drozdowicz

Honors Scholar Theses

The subventricular zone (SVZ) is one of two areas in the brain that, in a healthy mouse, continually generate neurons throughout adulthood. While it was previously thought that only the A9 neurons of the substantia nigra sent dopaminergic afferents to the SVZ, recent studies suggest that the A10 neurons of the ventral tegmental area may innervate this area. This project has aimed to discover which, if either, model is correct.

Examination of the Aphakia (AK) mouse was used to determine the role of distinct midbrain regions in SVZ regulation. Additionally, intraperitoneal injections of the chemical MPTP were used to deduce …


Characterization Of The Putative Xyloglucan Glycosyltransferase Gt14 In Arabidopsis Thaliana, Najam R. Syed May 2010

Characterization Of The Putative Xyloglucan Glycosyltransferase Gt14 In Arabidopsis Thaliana, Najam R. Syed

Honors Scholar Theses

Plant cell walls largely consist of matrix polysaccharides that are linked to cellulose microfibrils. Xyloglucan, the primary hemicellulose of the cell wall matrix, consists of a repeating glucose tetramer structure with xylose residues attached to the first three units ('XXXG'). In Arabidopsis thaliana, the core XXXG structure is further modified by enzymatic addition of galactose and fucose residues to the xylose side chains to produce XLXG, XXLG, XLLG and XLFG structures. GT14 is a putative glycosyltransferase in the GT47 gene family. Initial predictions of GT14's hydrophobic regions, based on its translated amino acid sequence, are almost identical to its Arabidopsis …


Alkylphenol Contamination In Homarus Americanus, Jennifer Renee Urban May 2010

Alkylphenol Contamination In Homarus Americanus, Jennifer Renee Urban

Honors Scholar Theses

Alkylphenols are pollutants that are present in marine sediments and fishes. In earlier work it has been discovered that alkylphenols are present in the Homarus americanus, or the American lobster. Research suggests that alkylphenols could behave as endocrine disruptors as they have been found to affect juvenile hormone activity. It has been hypothesized that lobsters may be able to rid themselves of alkylphenol contamination through secreting these compounds into the environment or sequestering them in their tissues. In this study, I address the question of how lobsters may rid themselves of alkylphenols by analyzing hemolymph, muscle, gill, and shell samples …


Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman May 2010

Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman

Honors Scholar Theses

Human embryonic stem cells (hESCs) have the potential to

differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and …


The Development Of A Comprehensive Mechanism For Intracellular Calcium Oscillations: A Theoretical Approach And An Experimental Validation, Amanda A. Borges, Deanna Salter, Sandor Kadar, Steven B. Symington May 2010

The Development Of A Comprehensive Mechanism For Intracellular Calcium Oscillations: A Theoretical Approach And An Experimental Validation, Amanda A. Borges, Deanna Salter, Sandor Kadar, Steven B. Symington

Pell Scholars and Senior Theses

Calcium is an important second messenger for cellular communication. Theoretical models help scientists understand its signalling mechanism. A comprehensive model was developed in order to minimize any limitations in the models currently presented in the literature. Experimental results support the model and therefore the theoretical model provides a plausible explanation of the dynamics of the calcium-signaling mechanism. In the future, additional verification will be performed using various experimental configurations on PC12 cells. Further, the model will be used to predict the response of cells to environmental factors such as pesticides and heavy metals.


Protein Evolution Via Amino Acid And Codon Elimination, Lise Goltermann, Marie Sofie Yoo Larsen, Ranat Banerjee, Andreas C. Joerger, Michael Ibba, Thomas Bentin Apr 2010

Protein Evolution Via Amino Acid And Codon Elimination, Lise Goltermann, Marie Sofie Yoo Larsen, Ranat Banerjee, Andreas C. Joerger, Michael Ibba, Thomas Bentin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background
Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained via screening of reduced-size ensembles.

Methodology/Principal Findings
The strategy involves combining a sequential …


Oxidation Of Methane By A Biological Dicopper Centre, Ramakrishnan Balasubramanian, Stephen M. Smith, Swati Rawat, Liliya A. Yatsunyk, Timothy L. Stemmler, Amy C. Rosenzweig Apr 2010

Oxidation Of Methane By A Biological Dicopper Centre, Ramakrishnan Balasubramanian, Stephen M. Smith, Swati Rawat, Liliya A. Yatsunyk, Timothy L. Stemmler, Amy C. Rosenzweig

Biochemistry and Molecular Biology Faculty Publications

Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol1. Current processes to activate the strong C–H bond (104 kcal mol−1) in methane require high temperatures, are costly and inefficient, and produce waste2. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst3. There are two types of MMO. Soluble MMO (sMMO),expressed by several strains of …


Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller Apr 2010

Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller

Life Sciences Faculty Research

Background

Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions.

Methodology/Principal Findings

Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have …


How The Sequence Of A Gene Can Tune Its Translation, Kurt Fredrick, Michael Ibba Apr 2010

How The Sequence Of A Gene Can Tune Its Translation, Kurt Fredrick, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Sixty-one codons specify 20 amino acids, offering cells many options for encoding a polypeptide sequence. Two new studies (Cannarrozzi et al., 2010, Tuller et al., 2010) now foster the idea that patterns of codon usage can control ribosome speed, fine-tuning translation to increase the efficiency of protein synthesis.


T10c12 Conjugated Linoleic Acid Causes Delipidation In 3t3-L1 Adipocytes And Mice, Shan Jiang Apr 2010

T10c12 Conjugated Linoleic Acid Causes Delipidation In 3t3-L1 Adipocytes And Mice, Shan Jiang

Department of Animal Science: Dissertations, Theses, and Student Research

T10c12 conjugated linoleic acid (t10c12 CLA) causes the reduction of triglyceride contents in adipocytes. T10c12 CLA’s delipidation effect is associated with decreased nutrient uptake, adipogenesis, lipogenesis, and increased energy expenditure, lipolysis, fatty acid oxidation in adipocytes. However, the molecular mechanisms of CLA’s delipidation effects are still unknown. AMP-activated protein kinase (AMPK), a central regulator of cellular energy levels, is activated by an increase in the cellular AMP:ATP ratio or various cellular stresses. We demonstrated that t10c12 CLA activated AMPK in 3T3-L1 adipocytes, leading to inhibition of anabolic biosynthesis and increase of energy expenditure. Strong activation of AMPK can induce an …


Putting Metal In The Middle, David Bollivar Mar 2010

Putting Metal In The Middle, David Bollivar

Scholarship

Placing metal ions into the center of a porphyrin ring is a significant cellular challenge. Lundqvist et ai. (2010) provide snapshots of the AAA + motor unit of magnesium chelatase, an enzyme that insert magnesium ion into the porphyrin ring accompanied by ATP expenditure, in different states of binding to adenosyl nucleotides.