Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Structural Biology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 231

Full-Text Articles in Molecular Biology

Identification Of Regulatory Elements In The Untranslated Regions Of Streptolysin S Associated Gene A Messenger Rna From Group A Streptococcus, Cameron R. Carroll, Sara G. Nibar, Alexis S. Brown, Lauren R. Angello, Gabriela C. Pérez-Alvarado, Brian M. Lee Jan 2024

Identification Of Regulatory Elements In The Untranslated Regions Of Streptolysin S Associated Gene A Messenger Rna From Group A Streptococcus, Cameron R. Carroll, Sara G. Nibar, Alexis S. Brown, Lauren R. Angello, Gabriela C. Pérez-Alvarado, Brian M. Lee

Journal of the South Carolina Academy of Science

Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a human pathogen associated with a variety of diseases such as strep throat, scarlet fever, toxic shock syndrome, and necrotizing fasciitis. One of the virulence factors released by GAS during an invasive infection is a cytotoxic peptide, streptolysin S (SLS), which inhibits the immune response to necrotizing fasciitis. The streptolysin S associated gene A product, SagA, is modified to produce SLS. Thesag operon includes sagA and the genes required for enzyme-mediated post-translational modifications of SagA and the export of SLS. The sagA gene is contained within the pleiotropic …


Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova Jan 2024

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of …


On The Anti-Adipogenic Function Of Collagen Triple Helix Repeat-Containing Protein 1, Matthew E. Siviski Dec 2023

On The Anti-Adipogenic Function Of Collagen Triple Helix Repeat-Containing Protein 1, Matthew E. Siviski

Electronic Theses and Dissertations

Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors, including PPAR-gamma (PPARG) and C/EBP alpha (CEBPA). Thus, dysregulated adipogenesis predisposes adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that mice possessing a homozygous null gene mutation in collagen triple helix repeat-containing protein 1 (CTHRC1) have increased adiposity compared to wildtype mice, supporting the concept that CTHRC1 regulates body composition. Herein, we investigated the anti-adipogenic activity of CTHRC1. Using 3T3-L1 preadipocytes, we showed significantly reduced adipogenic differentiation in the presence of CTHRC1 commensurate to marked suppression of Cebpa and Pparg gene expression. In addition, CTHRC1 increased …


Using In Silico Tools To Analyze The 5ʹ Untranslated Regions Of The Alcohol Dehydrogenase Gene From Arabidopsis Thaliana And Omega Sequence, Reza Mohammadhassan, Tina Asadishad Dec 2023

Using In Silico Tools To Analyze The 5ʹ Untranslated Regions Of The Alcohol Dehydrogenase Gene From Arabidopsis Thaliana And Omega Sequence, Reza Mohammadhassan, Tina Asadishad

Makara Journal of Science

The 5ʹ ends of protein-encoding genes contain 5ʹ untranslated regions (5ʹUTRs), which can effectively participate in regulating gene expression. The 5ʹUTRs of Arabidospis thaliana–derived alcohol dehydrogenase gene (AtADH) and omega (Ω) sequence from tobacco mosaic virus (TMV) are the most effective enhancers in biotechnology. In this study, bioinformatics techniques were employed to analyze the characteristics of the above sequences. After 5ʹUTR sequence collection, the inner ribosome entrance sites; small RNA (sRNA) target sequences; nucleotide contents; and upstream start and stop codons, ORFs, and coding DNA sequences of the Ω sequence and AtADH 5ʹUTR were identified. Moreover, the …


Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield Dec 2023

Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield

Electronic Theses and Dissertations

Flavonoid glycosyltransferases (GTs), enzymes integral to plant ecological responses and human pharmacology, necessitate rigorous structural elucidation to decipher their mechanistic function and substrate specificity, particularly given their role in the biotransformation of diverse pharmacological agents and natural products. This investigation delved into a comprehensive exploration of the flavonol 3-O GT from Citrus paradisi (Cp3GT), scrutinizing the impact of a c-terminal c-myc/6x histidine tag on its enzymatic activity and substrate specificity, and successfully achieving its purification to apparent homogeneity. This established a strong foundation for potential future crystallographic and other structure/function analyses. Through the strategic implementation of site-directed mutagenesis, a thrombin …


The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou Dec 2023

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou

Doctoral Dissertations

Candida albicans phosphatidylserine (PS) synthase, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis due to its importance in virulence, absence in the host and conservation among fungal pathogens. This dissertation is focused on the identification of inhibitors for this membrane enzyme. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif present within Cho1, and here we revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1. For serine, we have predicted a …


Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang Dec 2023

Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang

All Dissertations

DNA base damage is common due to exposure to various endogenous and exogenous factors. To repair the base lesions, such as uracil from cytosine deamination, enzymes from the uracil-DNA glycosylase (UDG) superfamily are critical, which can recognize the damaged base and initiate the base excision repair (BER) pathway. There used to be six families of proteins identified in the UDG superfamily until a new member, UDGX, was found in Mycobacterium smegmatis, which is a unique DNA-crosslinking UDG. In this dissertation work, a series of biochemical analyses of the newly found UDGX are performed, including the analyses of structures, functions, …


Evaluating The Response Of Glycine Soja Accessions To Fungal Pathogen Macrophomina Phaseolina During Seedling Growth, Shirley Jacquet, Layla Rashad, Sonia Viera, Francisco Reta, Juan Reta Nov 2023

Evaluating The Response Of Glycine Soja Accessions To Fungal Pathogen Macrophomina Phaseolina During Seedling Growth, Shirley Jacquet, Layla Rashad, Sonia Viera, Francisco Reta, Juan Reta

Biological Science Student Working Papers

Charcoal rot caused by the fungal pathogen Macrophomina phaseolina (Tassi) Goid is one of various devastating soybean (Glycine max (L.) Merr.) diseases, which can severely reduce crop yield. The investigation into the genetic potential for charcoal rot resistance of wild soybean (Glycine soja) accessions will enrich our understanding of the impact of soybean domestication on disease resistance; moreover, the identified charcoal rot-resistant lines can be used to improve soybean resistance to charcoal rot. The objective of this study was to evaluate the resistance of wild soybean accessions to M. phaseolina at the seedling stage and thereby select the disease-resistant lines. …


Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr Nov 2023

Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Identification Of A Small Regulatory Rna Usps Associated With The Universal Stress Protein In Lactobacillus Species, Zarah M. Fowler, Sasha S. Bronovitskiy, Finn K. Rose, Brian M. Lee Aug 2023

Identification Of A Small Regulatory Rna Usps Associated With The Universal Stress Protein In Lactobacillus Species, Zarah M. Fowler, Sasha S. Bronovitskiy, Finn K. Rose, Brian M. Lee

Journal of the South Carolina Academy of Science

The gut microbiome is a complex habitat with many bacterial species, each playing crucial roles in regulating various physiological processes in the body. As the use of probiotics to combat human disease continues to increase, it is important to understand the mechanisms by which probiotic bacteria regulate their interactions with other bacteria and their host. Our exploration of the physiological functions of probiotic bacteria hopes to elucidate the role of small regulatory RNA (sRNA) in regulating gene expression within the microbiome. The goal of this project was to characterize the structure and function of the sRNA, UspS, which is found …


New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang May 2023

New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang

All Dissertations

Uracil-DNA glycosylase (UDG) superfamily, which consists of several groups of enzymes that recognize the damaged DNA bases and initiate the base excision repair (BER) pathway, is most important in dealing with DNA deamination and other base modifications. Thymine DNA glycosylase (TDG), which belongs to family 2 in the UDG superfamily, is able to specifically recognize and cleave the 5-methylcytosine (mC) oxidative derivatives including 5-formylcytosine (fC), 5-carboxylcytosine (caC), 5-hydromethyluracil (hmU) caused by active demethylation or DNA damage. My dissertation work is mainly focused on the fC and caC glycosylase activity within UDG superfamily. Chapter 1 is a general introduction to the …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish Apr 2023

The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish

Honors Theses

Biofilms are communities of surface-attached bacterial cells encased in an exopolymeric matrix. In this state, they are more resistant to antimicrobial treatment and can have adverse effects in medical, agricultural, and industrial settings. Whereas, as biocatalysts, biofilms from nonpathogenic bacteria enhance their performance and stability in catalysis. Unfortunately, there are several challenges when using bacteria in organic transformations due to their complex cellular chemistry. Trivalent lanthanide metals were discovered to serve regulatory roles in some bacterial catalytic processes, including those of Pseudomonas putida KT2440 (P. putida), a non-infectious Gram-negative bacterium. The main goal of our research is to use cerium(III) …


Mitochondrial Division: Synergizing In Mitochondrial Divisome, Ao Liu Jan 2023

Mitochondrial Division: Synergizing In Mitochondrial Divisome, Ao Liu

Dartmouth College Ph.D Dissertations

Mitochondria are the energy factories of the cell. The dynamic nature of cells demands routine changes in mitochondrial morphology by fusion and division. The dynamin GTPase Drp1 is a central mitochondrial division protein, driving constriction of the outer mitochondrial membrane via oligomerization. At least four regulatory factors control Drp1 activity on the outer mitochondrial membrane (OMM): 1) receptor proteins (Mff, MiD49, MiD51, and Fis1); 2) actin filaments; 3) the mitochondrial phospholipid cardiolipin (CL); and 4) Drp1 post-translational modifications, of which two phosphorylation sites (S579 and S600) are the most well studied. However, the molecular mechanism of how these factors work …


Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii Jan 2023

Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii

Graduate Theses, Dissertations, and Problem Reports

Saccharomyces cerevisiae are yeast that are unicellular eukaryotic organisms that are well studied as a model organism for understanding fundamental cellular processes. The ability of yeast to sense nutrient availability is crucial for their survival, growth, and reproduction. Yeast cells use various mechanisms to sense and respond to nutrient availability, including transporter-mediated uptake, receptor-mediated signaling, and sensing of metabolites. The subcellular localization of nutrient-sensing components is crucial for yeast function in nutrient sensing and signaling. Protein complexes, such as the AMP-activated protein kinase (AMPK) pathway, in nutrient sensing and response, as well as the downstream effects of these pathways …


Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban Dec 2022

Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban

Graduate Theses and Dissertations

Nitrogenase is the metalloenzyme only found in bacteria and archaea that is essential for biological nitrogen fixation (diazotrophy), but it can also serve as a catalyst in biofuel production. All diazotrophs contain a molybdenum (Mo) nitrogenase, while some species contain additional alternative nitrogenases where either vanadium (V) or iron (Fe) replace Mo in the active site cofactor. Nitrogen fixation by bacteria has been extensively studied. The limited investigation of nitrogen fixation in methanogenic archaea (methanogens) indicates production of nitrogenase is simpler than in bacteria and methanogen nitrogenase has different biochemical properties. Thus, methanogen nitrogenases provide a promising alternative for genetic …


Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias Sep 2022

Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias

Chemistry Theses

Protein cages found in nature have the ability to protect and develop new nanomaterials in order to enhance catalytic reactions. This is due to the ability of these organelle structures to mimic protein-based organelles such as Virus-Like Particles (VLPs). VLPs have the ability to not only resemble virus protein structures but to encapsulate enzymes while retaining their activity. This research examines the in vitro encapsulation withing the bacteriophage P22 derived VLP, and show that some enzymes may require a delay in encapsulation to allowed proper folding

and maturation before they can be encapsulated inside P22 as fully active enzymes. Exploring …


Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna Aug 2022

Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna

Electronic Theses and Dissertations

The versatility of nuclear magnetic resonance (NMR) spectroscopy is apparent when presented with diverse applications to which it can contribute. Here, NMR is used i) as a screening/ validation tool for a drug discovery program targeting the Phosphatase of Regenerating Liver 3 (PRL3), ii) to characterize the conformational heterogeneity of p53 regulator, Murine Double Minute X (MDMX), and iii) to characterize the solution dynamics of guanosine monophosphate kinase (GMPK). Mounting evidence suggesting roles for PRL3 in oncogenesis and metastasis has catapulted it into prominence as a cancer drug target. Yet, despite significant efforts, there are no PRL3 small molecule inhibitors …


Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen Jun 2022

The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen

FIU Electronic Theses and Dissertations

Proteins do versatile work in cells. They require a cascade of structural changes to perform different tasks like binding to the other neighboring biomolecules, transporting small chemicals, activating a chemical reaction, etc. The structural conformations of proteins can be critical in changing their working ability. In this dissertation, I investigated the role of conformational changes of viral protein, e.g., spike and envelope protein of SARS-CoV-2, and bacterial protein, e.g., multidrug transporter and toxic extrusion protein- PfMATE from Pyrococcus furiosus. Also, I performed molecular docking-based drug screening targeting the E protein to suggest a set of drugs that can be repurposed …


Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni Jun 2022

Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni

Doctoral Dissertations

Caspases are cysteine aspartate proteases involved in various cellular pathways including apoptosis, inflammation, and neurodegeneration. Caspase-9 is classified as an initiator apoptotic caspase that is activated upon intrinsic stress. Caspase-9 is composed of two domains: an N- terminal CARD domain and a catalytic core domain. We have employed hydrogen deuterium exchange mass spectrometry (H/DX-MS) to determine the 1) dynamics of the full-length caspase- 9, 2) dynamic impacts on caspase-9 upon substrate-induced dimerization, and 3) regions involved in the CARD: catalytic core domains interactions. Upon intrinsic stress, caspase-9 activates executioners, procaspase-3 and -7 but not procaspase-6. We have employed site-directed mutagenesis …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Microbial Diversity And Community Structure In Sediments Associated With The Seagrass (Thallassia Testudinum) In Apalachicola Bay, Florida, Rahma Ahmed, Thomas Mcelroy, Troy Mutchler Apr 2022

Microbial Diversity And Community Structure In Sediments Associated With The Seagrass (Thallassia Testudinum) In Apalachicola Bay, Florida, Rahma Ahmed, Thomas Mcelroy, Troy Mutchler

Symposium of Student Scholars

Seagrass is an angiosperm which provides many ecosystem services in coastal areas, such as providing food, shelter and nurseries for many species, and decreasing the impact of waves on shorelines. A global assessment reported that 29% of known seagrass meadows are in a state of decline due to the effects of human activity. Seagrass is commonly found in shallow marine waters where they form meadows containing a microbiome that plays an important role in providing nutrients for seagrass growth, though little is known about the microorganisms within the seagrass meadow sediments. Our project collected sediments from seagrass meadows and adjacent …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB/SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB/SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …