Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Molecular Biology

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler Aug 2022

Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler

Electronic Theses and Dissertations

Microbial communities contain densely packed cells where competition for space and resources are fierce. These communities are generally referred to as biofilms and provide advantages to individual cells against immunological and antimicrobial intervention, dehydration, and predation. High intracellular pools of cyclic diguanylate monophosphate (c-di-GMP) cause cells to aggregate during biofilm formation through the production of diverse extracellular polymers. Genes that encode c-di-GMP catalytic enzymes are commonly mutated during chronic infections where opportunists display enhanced resistance to phagocytosis and antibiotics. Our lab uses an emergent multicellular trait in the model organism Pseudomonas fluorescens Pf0-1 to study the emergence of c-di-GMP mutations …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Crispr Gene Editing In The Sea Squirt, Ciona Intestinalis, Evelyn Siler, Steven Irvine May 2018

Crispr Gene Editing In The Sea Squirt, Ciona Intestinalis, Evelyn Siler, Steven Irvine

Senior Honors Projects

Genetic manipulation has come a long way in the past ten years alone. Scientists have had access to gene editing techniques for decades, but until recently these methods have proven to be expensive and unpredictable. However, thanks to the development of a new, more efficient genome editing strategy called CRISPR/Cas9, more aggressive progress can now be made in genetics research.

CRISPR is not a machine or a physical tool, but rather it is a system that involves introducing a protein into a cell, along with a DNA segment that will attract the protein to a desired location on the DNA. …


Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould Sep 2017

Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould

Natural Sciences and Mathematics | Faculty Scholarship

Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements. We used CRISPR/Cas9 to delete the orthologous region in zebrafish in order to test the pathogenicity of …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova Dec 2016

Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova

Theses & Dissertations

Despite multiple DNA repair pathways, DNA lesions can escape repair and compromise normal chromosomal replication, leading to genome instability. Cells utilize specialized low-fidelity Translesion Synthesis (TLS) DNA polymerases to bypass lesions and rescue arrested replication forks. TLS is a highly conserved two-step process that involves insertion of a nucleotide opposite a lesion and extension of the resulting aberrant primer terminus. The first step can be performed by both replicative and TLS DNA polymerases and, because of non-instructive DNA lesions, often results in a nucleotide misincorporation. The second step is almost exclusively catalyzed by DNA polymerase ζ …


Identification Of A Novel Gene On 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (Adrp)., Stephen P Daiger, Lori S Sullivan, Sara J Bowne, Daniel C Koboldt, Susan H Blanton, Dianna K Wheaton, Cheryl E Avery, Elizabeth D Cadena, Robert K Koenekoop, Robert S Fulton, Richard K Wilson, George M Weinstock, Richard A Lewis, David G Birch Jan 2016

Identification Of A Novel Gene On 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (Adrp)., Stephen P Daiger, Lori S Sullivan, Sara J Bowne, Daniel C Koboldt, Susan H Blanton, Dianna K Wheaton, Cheryl E Avery, Elizabeth D Cadena, Robert K Koenekoop, Robert S Fulton, Richard K Wilson, George M Weinstock, Richard A Lewis, David G Birch

Faculty Publications

Whole-genome linkage mapping identified a region on chromosome 10q21.3-q22.1 with a maximum LOD score of 3.0 at 0 % recombination in a six-generation family with autosomal dominant retinitis pigmentosa (adRP). All known adRP genes and X-linked RP genes were excluded in the family by a combination of methods. Whole-exome next-generation sequencing revealed a missense mutation in hexokinase 1, HK1 c.2539G > A, p.Glu847Lys, tracking with disease in all affected family members. One severely-affected male is homozygous for this region by linkage analysis and has two copies of the mutation. No other potential mutations were detected in the linkage region nor were …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Celia A. Schiffer

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y …


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …


The C. Elegans Heterochronic Gene Lin-46 Affects Developmental Timing At Two Larval Stages And Encodes A Relative Of The Scaffolding Protein Gephyrin, A. S.-R. Pepper, Jill E. Mccane, Kevin Kemper, Dennis Au Yeung, Rosalind C. Lee, Victor Ambros, Eric G. Moss Apr 2004

The C. Elegans Heterochronic Gene Lin-46 Affects Developmental Timing At Two Larval Stages And Encodes A Relative Of The Scaffolding Protein Gephyrin, A. S.-R. Pepper, Jill E. Mccane, Kevin Kemper, Dennis Au Yeung, Rosalind C. Lee, Victor Ambros, Eric G. Moss

Dartmouth Scholarship

The succession of developmental events in the C. elegans larva is governed by the heterochronic genes. When mutated, these genes cause either precocious or retarded developmental phenotypes, in which stage-specific patterns of cell division and differentiation are either skipped or reiterated, respectively. We identified a new heterochronic gene, lin-46, from mutations that suppress the precocious phenotypes caused by mutations in the heterochronic genes lin-14 and lin-28. lin-46 mutants on their own display retarded phenotypes in which cell division patterns are reiterated and differentiation is prevented in certain cell lineages. Our analysis indicates that lin-46 acts at a step immediately downstream …