Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Molecular Biology

The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik Feb 2017

The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik

Plant and Soil Sciences Faculty Publications

MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus …


Functional Significance Of Branch Points In Mirtrons, Britton A. Strickland Dec 2016

Functional Significance Of Branch Points In Mirtrons, Britton A. Strickland

Honors Theses

MicroRNAs are a heterogeneous group of small regulatory RNAs generated by many pathways. Mirtrons (miR) are a class of microRNAs produced by splicing, and some mirtrons contain a 3’ tail located downstream from the self-complementary hairpin. During RNA splicing, a loop-like “lariat” intermediate structure is created when the 5’ end of the RNA is attached to an adenine called the branch point. The goal of this project is to uncover the contribution of branch point location to the processing of tailed mirtrons into functional gene regulators. This project approaches this issue from two directions. First, branch points were identified by …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Gyongyi Szabo

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros

Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Victor R. Ambros

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li Oct 2015

Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li

Victor R. Ambros

BACKGROUND: Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. RESULTS: We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros Oct 2015

Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros

Victor R. Ambros

The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …


Circulating Microrna Profiles In Human Patients With Acetaminophen Hepatotoxicity Or Ischemic Hepatitis, Jeanine Ward, Chitra Kanchagar, Isana Veksler-Lublinsky, Rosalind C. Lee, Mitchell R. Mcgill, Hartmut Jaeschke, Steven C. Curry, Victor R. Ambros Aug 2014

Circulating Microrna Profiles In Human Patients With Acetaminophen Hepatotoxicity Or Ischemic Hepatitis, Jeanine Ward, Chitra Kanchagar, Isana Veksler-Lublinsky, Rosalind C. Lee, Mitchell R. Mcgill, Hartmut Jaeschke, Steven C. Curry, Victor R. Ambros

Victor R. Ambros

We have identified, by quantitative real-time PCR, hundreds of miRNAs that are dramatically elevated in the plasma or serum of acetaminophen (APAP) overdose patients. Most of these circulating microRNAs decrease toward normal levels during treatment with N-acetyl cysteine (NAC). We identified a set of 11 miRNAs whose profiles and dynamics in the circulation during NAC treatment can discriminate APAP hepatotoxicity from ischemic hepatitis. The elevation of certain miRNAs can precede the dramatic rise in the standard biomarker, alanine aminotransferase (ALT), and these miRNAs also respond more rapidly than ALT to successful treatment. Our results suggest that miRNAs can serve as …


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …