Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Molecular Biology

Regulation Of The Wnt/Wingless Receptor Lrp6/Arrow By The Deubiquitylating Complex Usp46, Zachary T. Spencer Jun 2023

Regulation Of The Wnt/Wingless Receptor Lrp6/Arrow By The Deubiquitylating Complex Usp46, Zachary T. Spencer

Dartmouth College Ph.D Dissertations

The evolutionarily conserved Wnt/Wingless signal transduction pathway is critical for the proper development of all animals and implicated in numerous diseases in adulthood. Upon binding of the Wnt/Wingless ligand, a cascade of events culminates in inactivation of the destruction complex, a negative regulator of the pathway, and the subsequent formation of singalosomes which mediate pathway activation. A critical component of signalosome formation is the Wnt/Wingless receptor LRP6/Arrow. Upon canonical pathway activation, LRP6/Arrow undergoes activation via phosphorylation by several kinases and complexes with another Wnt/Wingless receptor Frizzled, along with several cytoplasmic components. While many studies have investigated the regulatory mechanisms of …


Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee May 2022

Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee

Chancellor’s Honors Program Projects

No abstract provided.


Molecular And Genetic Studies Of Robo2 Transcriptional Regulation In The Central Nervous System Of Drosophila Melanogaster, Muna Abdal Rahim Abdal Rhida May 2021

Molecular And Genetic Studies Of Robo2 Transcriptional Regulation In The Central Nervous System Of Drosophila Melanogaster, Muna Abdal Rahim Abdal Rhida

Graduate Theses and Dissertations

Drosophila Robo2 axon guidance receptor is a member of the evolutionarily conserved Roundabout (Robo) protein family that is involved in directing axons that cross the midline to the other side of the animal body. Robo2 roles mainly depend on two factors: The functional domains of the Robo2 protein, which is extensively studied, and the dynamic transcription of robo2 in various subsets of cells throughout embryogenesis which is not fully understood. Thus, knowing robo2 enhancers that transcriptionally regulate robo2 during embryogenesis is significant. To investigate robo2 potential enhancers, we screened 17 transgenic lines of Drosophila that were generated by Janelia Research …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


An Expanded Toolkit For Gene Tagging Based On Mimic And Scarless Crispr Tagging In, David Li-Kroeger, Oguz Kanca, Pei-Tseng Lee, Sierra Cowan, Michael T Lee, Manish Jaiswal, Jose Luis Salazar, Yuchun He, Zhongyuan Zuo, Hugo J Bellen Aug 2018

An Expanded Toolkit For Gene Tagging Based On Mimic And Scarless Crispr Tagging In, David Li-Kroeger, Oguz Kanca, Pei-Tseng Lee, Sierra Cowan, Michael T Lee, Manish Jaiswal, Jose Luis Salazar, Yuchun He, Zhongyuan Zuo, Hugo J Bellen

Faculty Publications

We generated two new genetic tools to efficiently tag genes in Drosophila. The first, Double Header (DH) utilizes intronic MiMIC/CRIMIC insertions to generate artificial exons for GFP mediated protein trapping or T2A-GAL4 gene trapping in vivo based on Cre recombinase to avoid embryo injections. DH significantly increases integration efficiency compared to previous strategies and faithfully reports the expression pattern of genes and proteins. The second technique targets genes lacking coding introns using a two-step cassette exchange. First, we replace the endogenous gene with an excisable compact dominant marker using CRISPR making a null allele. Second, the insertion is replaced …


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …


A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati Sep 2017

A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati

Dissertations, Theses, and Capstone Projects

With increased understanding of their roles in signal transduction and metabolism, eicosanoids have emerged as important players in human health and disease. Mammalian prostanoids and related lipid mediators perform varied functions in different tissues and organs. Synthesized through the oxygenation of C20 polyunsaturated fatty acids, mammalian eicosanoids are both pro- and anti-inflammatory. The physiological contexts in which eicosanoid family members act at the cellular level are not well understood. In this study, we examined whether the genome of Drosophila melanogaster, a powerful model for innate immunity and inflammation, codes for the enzymes required for eicosanoid biosynthesis. We report the …


A Genetic Analysis Of Nuclear Functions Of The Lipin Protein In Drosophila Melanogaster, Xeniya Rudolf May 2017

A Genetic Analysis Of Nuclear Functions Of The Lipin Protein In Drosophila Melanogaster, Xeniya Rudolf

Graduate Theses and Dissertations

Lipins are a family of proteins that have critical functions in the control of fat storage and energy homeostasis. Biochemically, lipins have two functions. They provide an enzymatic activity (phosphatidate phosphatase or PAP activity) in the glycerol-3 phosphate pathway that leads to the production of storage fats (triacylglycerols). In addition, they play a role in the regulation of genes in the cell nucleus as transcriptional co-regulators. The PAP activity of lipins has been widely studied in a number of organisms. However, the transcriptional co-regulator function is not as well described in the literature. The transcriptional function of lipins depends on …


Functional Significance Of Branch Points In Mirtrons, Britton A. Strickland Dec 2016

Functional Significance Of Branch Points In Mirtrons, Britton A. Strickland

Honors Theses

MicroRNAs are a heterogeneous group of small regulatory RNAs generated by many pathways. Mirtrons (miR) are a class of microRNAs produced by splicing, and some mirtrons contain a 3’ tail located downstream from the self-complementary hairpin. During RNA splicing, a loop-like “lariat” intermediate structure is created when the 5’ end of the RNA is attached to an adenine called the branch point. The goal of this project is to uncover the contribution of branch point location to the processing of tailed mirtrons into functional gene regulators. This project approaches this issue from two directions. First, branch points were identified by …


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

Dissertations & Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu Jan 2016

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu

Wayne State University Dissertations

Chromatin modification and cellular metabolism are tightly connected. The mechanism for this cross-talk, however, remains incompletely understood. SIN3 controls histone acetylation through association with the histone deacetylase RPD3. In this study, my major goal is to explore the mechanism of how SIN3 regulates cellular metabolism.

Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. In collaboration with others, I report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality, as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone …


A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi Jan 2016

A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi

Wayne State University Dissertations

In humans and fruit flies, males have one X chromosome while females have two. This imbalance in gene dosage is potentially lethal, and the process of dosage compensation corrects it. The MSL (Male Specific Lethal) complex, which is composed of five proteins and one of two functionally redundant long non-coding roX (RNA on the X) RNAs, brings about dosage compensation in Drosophila melanogaster. In fruit fly dosage compensation, all the genes on the single male X chromosome are upregulated approximately twofold, via chromatin modifications, to equalize gene dosage with the two X chromosomes of females. This process calls for highly …


Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros Oct 2015

Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros

Victor R. Ambros

The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which …


Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil Apr 2015

Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil

Senior Theses and Projects

Segmentation is a key feature of arthropod diversity and evolution. In the standard model for arthropod development, Drosophila melanogaster, segments develop simultaneously by a progressive subdivision of the embryo. By contrast, most arthropods add segments sequentially from a posterior region called the growth zone and in a manner similar to vertebrates.

Recent work, mainly focused on insects, suggests that Notch signaling might play a role in arthropods that segment sequentially. These studies document a potential regulatory similarity between sequentially segmenting arthropods and vertebrates. In vertebrates, somite formation involves a molecular oscillator that functions as a pacemaker, driving periodic expression …


Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta Jan 2015

Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta

Wayne State University Dissertations

Cyclin J (CycJ) is a highly conserved cyclin that is uniquely expressed specifically in ovaries in Drosophila. Deletion of the genomic region containing CycJ and adjacent genes resulted in a genetic interaction with neighboring piRNA pathway gene, armitage (armi). Here I assessed oogenesis in CycJ null in the presence or absence of mutations in armi or other piRNA pathway genes. Although CycJ null flies had decreased egg laying and hatching rates, ovaries appeared normal indicating that CycJ is dispensable for oogenesis under normal conditions. Further double mutant analysis of CycJ and neighbor armi, as well as two other piRNA pathway …


A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang Jan 2015

A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang

Wayne State University Dissertations

Friedreich’s ataxia (FRDA) is an inherited autosomal recessive neurodegenerative disease. It affects 1 in every 50,000 people in central Europe and North America. FRDA is caused by deficiency of Frataxin, an essential mitochondrial iron chaperone protein, and the associated oxidative stress damages. Autophagy, a housekeeping process responsible for the bulk degradation and turnover of long half-life proteins and organelles, is featured by the formation of double-membrane vacuoles and lysosomal degradation. Previous researches indicate that Danon’s disease, the inherited neural disorder disease that shares similar symptoms with FRDA, is due to the malfunction of autophagy. Based on this, we raise the …


Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte Jan 2014

Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte

Wayne State University Dissertations

Over 30% of Drosophila genome is assembled into heterochromatin. Heterochromatin is relatively gene poor, transcriptionally less active and remains condensed during interphase. Previous studies established that roX RNA and some of the Male Specific Lethal (MSL) proteins, all components of the dosage compensation complex, are required for full expression of autosomal heterochromatic genes in male flies but not in females. This was surprising since heterochromatin is generally not thought to be sexually dimorphic. The genetic basis for the regulation of sex-specific heterochromatin was completely unknown.

To determine if roX RNAs localize directly at the heterochromatic regions that they regulate, I …


The Drosophila Interactions Database: Integrating The Interactome And Transcriptome, Thilakam Murali Jan 2013

The Drosophila Interactions Database: Integrating The Interactome And Transcriptome, Thilakam Murali

Wayne State University Dissertations

In this thesis I describe the integration of heterogeneous interaction data for Drosophila into DroID, the Drosophilainteractions database, making it a one-stop public resource for interaction data. I have also made it possible to filter the interaction data using gene expression data to generate context-relevant networks making DroID a one-of-a kind resource for biologists. In the two years since the upgraded DroID has been available, several studies have used the heterogeneous interaction data in DroID to advance our understanding of Drosophila biology thus validating the need for such a resource for biologists. In addition to this, I have identified …


Effects Of Chemical Aneuploidogens On Taxol Purified Drosophila And Mouse Brain Microtubules Polymerization And Depolymerization In Vitro, Anil Sehgal Jul 1990

Effects Of Chemical Aneuploidogens On Taxol Purified Drosophila And Mouse Brain Microtubules Polymerization And Depolymerization In Vitro, Anil Sehgal

Biological Sciences Theses & Dissertations

The effects of aneuploidogens (aneuploidy causing agents) on taxol-purified microtubules from Drosophila and mouse brain in vitro were studied by using a spectrophotometric assay and electron microscopy. Colchicine, acetonitrile, propionitrile, acrylonitrile, dimethyl sulfoxide (DMSO), griseofulvin and cadmium chloride inhibited microtubule polymerization whereas methoxyethyl acetate (MEA) and methyl mercuric chloride (MMC) did not. All aneuploidogens tested (at 50mM) resulted in reduced rate of elongation of mouse brain microtubules. MMC, cadmium chloride and DMSO resulted in increased rates of Drosophila microtubule elongation whereas the rest of the drugs resulted in decreases. The in vitro results from Drosophila correlate well with the previously …