Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Genetics and Genomics

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 45

Full-Text Articles in Molecular Biology

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


The Effect Of Nuclear Perturbations On The 3d Organization Of The Genome, Rosela Golloshi Dec 2020

The Effect Of Nuclear Perturbations On The 3d Organization Of The Genome, Rosela Golloshi

Doctoral Dissertations

Cells in our body experience constant mechanical forces that influence biological functions such as growth and development. The nucleus has been implicated as a key mechanosensor and can directly influence chromatin organization and epigenetic alterations leading to gene expression changes. However, the mechanism by which such mechanical forces lead to genomic alterations and expression of mechanosensitive genes is not fully understood. The work presented in this dissertation investigates the effect of mechanical and epigenetic perturbations on the 3D genome organization. To investigate this 3D genome folding, we use Chromosome Conformation Capture followed by high throughput sequencing (Hi-C) (Chapter-1) which identifies …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


Population Structure Of A Federally Endangered Plant (Astragalus Jaegerianus Munz, Fabaceae) With Limited Range Using Microsatellites, Sueann Neal Dec 2020

Population Structure Of A Federally Endangered Plant (Astragalus Jaegerianus Munz, Fabaceae) With Limited Range Using Microsatellites, Sueann Neal

Electronic Theses, Projects, and Dissertations

Studies on population genetics examine the relationship and effects of population structure, migration, gene flow and demographic history, and are therefore important in the conservation of endangered species. Astragalus jaegerianus, a critically federally endangered species found in a geographically restricted range is investigated to determine population structure and genetic variation. Previous research on A. jaegerianus focused on DNA sequence data for cpDNA and nrDNA showed no variation. Further research on A. jaegerianus utilizing AFLP’s on the whole genome indicated substantial gene diversity and population structure consistent with geographically widespread species. AFLP research is a cost-effective process to identify levels …


A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose Dec 2020

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a very poor patient prognosis (5-year survival of ≤ 7%). While transcriptional profiling has aided in the classification of this disease into at least two broader subtypes, this alone has so far been insufficient to inform on more nuanced patterns of oncogenic dependency. We hypothesized that a more comprehensive and granular characterization of PDAC disease diversity is required to establish relevant context for targeted therapy. To this end, we sought to establish an integrated platform to: i) more comprehensively characterize differential oncogenic signaling across our tumor models, and ii) establish …


Genetic Polymorphism Of Bitter Taste Perception In Tempe, Arizona And Its Association With Nutritional Status, Daniel Woodley, Benjamin Cabrera Nov 2020

Genetic Polymorphism Of Bitter Taste Perception In Tempe, Arizona And Its Association With Nutritional Status, Daniel Woodley, Benjamin Cabrera

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Development Of A Dna Methylation Multiplex Assay For Body Fluid Identification And Age Determination, Quentin Gauthier Nov 2020

Development Of A Dna Methylation Multiplex Assay For Body Fluid Identification And Age Determination, Quentin Gauthier

FIU Electronic Theses and Dissertations

For forensic laboratories, the determination of body fluid origin of samples collected at a crime scene are typically presumptive and often destructive. However, given that in certain cases the presence of DNA is not in dispute and rather where the DNA came from is of primary concern, new methodologies are needed. Epigenetic modifications, such as DNA methylation, affect gene expression in every cell of every mammal. These DNA methylation patterns typically are observed as the addition of a methyl group on the 5’ carbon of a cytosine followed by guanine (CpG). Methylation patterns have been observed to change in response …


Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich Oct 2020

Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich

Electronic Thesis and Dissertation Repository

Stone fruits are a valuable crop grown worldwide, however pathogens such as viruses threaten fruit production by reducing tree health and fruit yield. In an orchard within the Niagara region of Ontario, symptoms typical of viral infection such as chlorosis and leaf deformation were seen on sweet cherry (Prunus avium L.) trees. Next generation sequencing was performed on symptomatic and asymptomatic leaves and four viruses were identified. On the tree displaying the most severe symptoms, Prune dwarf virus (PDV), was the only virus detected. A survey conducted during this work showed 42% of cherry trees on a single …


Characterization Of Mechanotransduction In Annulus Fibrosus Cells, Min Kyu M. Kim Aug 2020

Characterization Of Mechanotransduction In Annulus Fibrosus Cells, Min Kyu M. Kim

Electronic Thesis and Dissertation Repository

IVD degeneration is a multifactorial pathological process associated with back pain. While biomechanical factors are important regulators of IVD homeostasis, mechanical loading also contribute to the onset of IVD degeneration. Importantly, the mechanotransduction pathways that mediate cell type-specific responses to mechanical loading are not well understood. Transient receptor potential vanilloid 4 (TRPV4) is a multimodally activated cell surface cation channel implicated as a mechanoreceptor regulating the mechano-response in other musculoskeletal cell types. Using both in vitro and in vivo models, the current study aimed to characterize the role of TRPV4 in annulus fibrosus (AF) cell mechanotransduction. Using a mechanically dynamic …


Engineering Natural Competence Into The Fast-Growing Cyanobacterium Synechococcus Elongatus Utex 2973, Kristen Elizabeth Wendt Aug 2020

Engineering Natural Competence Into The Fast-Growing Cyanobacterium Synechococcus Elongatus Utex 2973, Kristen Elizabeth Wendt

Arts & Sciences Electronic Theses and Dissertations

Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium discovered to date. Using water, carbon dioxide, and light alone, this organism can double in 1.5 hours under optimal conditions. The accelerated doubling exhibited by Synechococcus 2973 makes it a prime candidate to serve as a model photoautotrophic system. However, Synechococcus 2973 lacks one highly desirable feature: it cannot undergo natural transformation. This thesis seeks to engineer this capacity into this fast-growing system in order to create an organism that is both fast growing and naturally competent. Synechococcus 2973 is a unique platform because it is >99% genetically identical to another …


Structure And Evolution Of Lizard Immunity Genes, Trent Santonastaso Aug 2020

Structure And Evolution Of Lizard Immunity Genes, Trent Santonastaso

University of New Orleans Theses and Dissertations

One of the most important gene families to play a role in adaptive immunity is the major histocompatibility complex (MHC). MHC class II loci are considered to be the most variable loci in the vertebrate genome, and studies have shown that this variability can be maintained through complex co-evolutionary dynamics between host and parasite. Despite the rich body of research into the MHC, there is comparatively little understanding of its genomic architecture in reptiles. Similarly, loci associated with innate immunity have received little attention in reptiles compared to other vertebrates. In the first chapter, we investigated the structure and organization …


Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon Aug 2020

Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon

Dissertations & Theses (Open Access)

Genetic engineering has been re-shaped by the invention of new tools in modern biotechnology in a way that offers precision and efficiency in modifying the genome at a single nucleotide level and/or allowing precise control of gene expression. Such gene manipulation brings about significant findings and revelations in comprehending more about embryonic development, cellular and physiological functions, and disease pathology. Current methods used to produce conditional knockouts have limitations on conditional allele placement and modification varies among genes in different organisms. Thus, a system for generating conditional alleles with fidelity remains a challenge. My goal was to examine an approach …


A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal Jul 2020

A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal

Pharmacy

Aims: Serine protease inhibitor B1 (SerpinB1) is a neutrophil elastase inhibitor that has been proved to be associated with type 2 diabetes mellitus and pancreatic β-cell proliferation. In this study, we investigated 2 SERPINB1 SNPs, rs114597282 and rs15286, regarding their association with diabetes risk and various anthropometric and biochemical parameters in Egyptian type 2 diabetic patients.

Materials and Methods: A total of 160 subjects (62 control and 98 type 2 diabetic patients) participated in this study. Various anthropometric and biochemical parameters were assessed. Genotyping assay for the two SNPs was done using TaqMan genotyping assays. The association of rs15286 variants …


Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther Jul 2020

Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther

Doctoral Dissertations

Many legumes form a symbiosis with nitrogen-fixing bacteria found in the soil. This relationship is beneficial to both the plant and the bacteria; the plant receives nitrogen that is otherwise limited, and the bacteria receive fixed carbon. Upon sensing the bacteria, the plant forms a new organ (the nodule) where the bacteria are housed within the cells. Many genes are required for the proper formation and function of nodules; this dissertation is broadly focused on how genes required for nitrogen-fixing symbiosis are co-opted from other cellular processes and how they are specialized for symbiosis. Protein trafficking from the plant to …


Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright Jul 2020

Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright

Biology ETDs

Microalgae are of interest for the creation of sustainable and cost competitive alternatives to petroleum-based fuels and chemicals. However, cultivation, extraction and processing of algal biomass requires improved yields to achieve economic feasibility. The advancement of microalgal biotechnology and various genetic engineering techniques allow the improvement of microalgae biomass for this purpose. Here, the characterization of the overexpression of the native vacuolar H+ pumping pyrophosphate (AVP1) in Picochlorum soloecismus was examined. AVP1 overexpression causes biomass increase in relevant plant crops. When overexpressed in this microalga it increases carbon storage in the form of starch in a closed laboratory photobioreactor. However, …


Novel Long Non-Coding Rna Cdlinc Promotes Nsclc Progression, Christina J. Moss Jul 2020

Novel Long Non-Coding Rna Cdlinc Promotes Nsclc Progression, Christina J. Moss

USF Tampa Graduate Theses and Dissertations

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide with a low 5-year survival rate of only around 21%. This low 5-year survival rate is due to two main reasons. First, NSCLC is often diagnosed at the later stages when it has already metastasized. Second, NSCLC is an incredibly diverse, heterogenous disease making it very hard to target the true molecular oncogenic drivers. New targets for personalized therapeutics are needed based on the expression status of each individual lung cancer tumor.

One way of looking for these new therapeutics is to begin by identifying the oncogenotype …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert Jun 2020

Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert

Dissertations, Theses, and Capstone Projects

Singular gene expression is a common phenomenon in biology, making its appearance in immunoglobulin selection, protocadherin expression, X chromosome-inactivation, random monoallelic expression, and olfactory receptor choice. Singularity involves an activation and a feedback step. The mechanisms of singular gene choice have some capacity to integrate additional member genes while still maintaining singularity, but will activate an additional member if an earlier choice was incapable of triggering the feedback step. Odorant Receptor (OR) genes are substantially divergent from each other in terms of coding sequence, promoter structure, and genomic locus, all of which plays a role in how many Olfactory Sensory …


Dendritic Cell Development And Function, Vivek Durai May 2020

Dendritic Cell Development And Function, Vivek Durai

Arts & Sciences Electronic Theses and Dissertations

Dendritic cells (DCs) are a group of immune cells that include both classical dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). cDCs are further comprised of two distinct subsets, cDC1s and cDC2s, which play critical roles in the initiation of innate and adaptive immune responses. Understanding how these lineages develop and function is therefore paramount. All DCs require the receptor tyrosine kinase Flt3 and its ligand Flt3L for their development, but the loss of Flt3L in mice leads to a more severe DC deficiency than does the loss of Flt3. This has led to speculation that Flt3L can bind to …


Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman May 2020

Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman

Senior Theses

Within pigment-producing cells known as melanocytes, the transcription factor MITF is intimately involved in regulating genes associated with cell cycle maintenance and melanocyte differentiation. Research, however, has provided conflicting results on the relationship between the expression levels of MITF and melanocyte cell fate. To complicate matters, two splice variants of MITF exist, differing by only 18 base pairs. These variants have been observed at variable levels of expression in melanocyte and melanoma cells, raising the question as to their functional purpose. Building upon previous research by the Leachman/Cassidy lab that identified the redox sensitivity of MITF while additionally establishing a …


Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson May 2020

Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson

Student Theses

Conventional STR typing, commonly used in forensics for human identification, poses a problem in criminal cases and paternity disputes involving monozygotic (MZ) twins because they share identical DNA sequences. To date, no routine method is available in forensics to differentiate between individuals of MZ pairs. Recently, epigenetic methods measuring differential DNA methylation patterns have been applied to MZ twin differentiation. In this study, we investigated the potential to identify MZ twins using a previously identified DNA methylation site in chromosome 3, cg18562578, in a sample of 129 MZ and 37 dizygotic (DZ) twin pairs. We used bisulfite converted saliva DNA …


Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak May 2020

Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak

Dissertations & Theses (Open Access)

Caspase-8 (CASP8) is one of the most frequently mutated genes in Head and Neck Squamous Carcinomas (HNSCC), and mutations of CASP8 are associated with poor overall survival. The distribution of these mutations in HNSCC suggests that they are likely to be inactivating. Inhibition of CASP8 has been reported to sensitize cancer cells to necroptosis, a unique cell death mechanism. Here, we evaluated how CASP8 regulates necroptosis in HSNCC using cell line models and syngeneic mouse xenografts. In vitro, knockdown of CASP8 rendered HNSCCs susceptible to necroptosis induced by a second mitochondria-derived activator of caspase (SMAC) mimetic, Birinapant, when combined …


Liver Transcriptomic Analysis After Short- And Long-Term Feeding Of Soy Protein Isolate And Its Ability To Reduce Liver Steatosis In Obese Zucker Rats, Melisa Kozaczek May 2020

Liver Transcriptomic Analysis After Short- And Long-Term Feeding Of Soy Protein Isolate And Its Ability To Reduce Liver Steatosis In Obese Zucker Rats, Melisa Kozaczek

Graduate Theses and Dissertations

According to the Centers for Disease Control and Prevention (CDC) the prevalence of obesity in adults in the United States during 2017-2018 was a 42.4%, a high number considering all the risks factors associated with this disorder, such as cardiovascular disease, insulin resistance, diabetes type 2, and fatty liver disease, among others. Fatty liver disease is the accumulation of lipids in the liver that can account for more than 5 to 10% of the liver’s weight. There are two types of fatty liver disease, alcoholic fatty liver disease (AFLD), and non-alcoholic fatty liver disease (NAFLD). AFLD is the detrimental accumulation …


Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith May 2020

Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith

Honors College

Muscular Dystrophy (MD) is characterized by varying severity and time-of-onset by individuals afflicted with the same forms of MD, a phenomenon that is not well understood. MD affects 250,000 individuals in the United States and is characterized by mutations in the dystroglycan complex. gmppb encodes an enzyme that glycosylates dystroglycan, making it functionally active; thus, mutations in gmppb cause dystroglycanopathic MD1 . The zebrafish (Danio rerio) is a powerful vertebrate model for musculoskeletal development and disease. Like human patients, gmppb mutant zebrafish present both mild and severe phenotypes. In order to understand the molecular mechanisms involved, we performed high-throughput RNA …


Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das May 2020

Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das

Undergraduate Honors Theses

Subcellular Localization of Tobacco SABP2 under Normal and Stress Conditions

Salicylic acid (SA), a phytohormone, plays an important role in plant physiology. SA mediated innate immune pathway is an important pathway for plant immunity against pathogens. Plants resisting pathogen infection synthesize higher levels of Methyl Salicylate (MeSA), which is then converted to SA by the esterase activity of Salicylic Acid Binding Protein 2 (SABP2). The high level of the converted SA leads to enhanced pathogen resistance. The study of subcellular localization of a protein is critical in explaining its potential biochemical functions. SABP2 tagged with eGFP was expressed transiently in …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman Apr 2020

Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman

College of Sciences Posters

The telomeres are vitally important regions that are located at the tips of the chromosomes. Their dysfunction, caused by length shortening can lead to senescent cells, which in turn cause age-related diseases, including cancer. The subtelomeres, located next to the telomeres, possess the critical role of regulating the adjacent telomere lengths. Even after many years of research, human subtelomeres have proven to be very hard to assemble due to their morphology. In order to overcome these problems, the hybrid assembly method we develop utilizes two of the latest available types of data, which complement each other: Linked-Reads and ultralong Nanopore …


Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia Apr 2020

Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia

Symposium of Student Research, Scholarship, and Creative Activities Materials

About 5.4 million basal and squamous cell skin cancers are diagnosed every year in the US. ΔNp63a, a member of the p53 transcription factor family, is overexpressed in non-melanoma skin cancer and regulates cell survival, migration and invasion. TIP60 is histone acetyltransferase (HAT) which mediates cellular processes such as transcription and the DNA damage response (DDR). Previous studies in our lab have shown that overexpression of TIP60 induces ΔNp63a protein stabilization in a catalytic-dependent manner. Since ΔNp63a is known to transcriptionally regulate several DDR genes and promote cisplatin resistance, its stabilization by TIP60 may contribute to the failure of platinum-based …


Diversity Of The Major Histocompatibility Complex In African Penguins (Spheniscus Demersus) In Situ, Athena Schalk Apr 2020

Diversity Of The Major Histocompatibility Complex In African Penguins (Spheniscus Demersus) In Situ, Athena Schalk

Undergraduate Honors Thesis Projects

The Major Histocompatibility Complex (MHC) is responsible for the immune response in all jawed vertebrates and protects individuals against a variety of pathogens and diseases. Maintaining genetic diversity within the MHC exons is critical to protecting endangered species. African penguins (Spheniscus demersus) are in danger of losing their MHC diversity in isolated populations due to reductions in population size associated with environmental changes and human activity. This study analyzes the diversity within the exons in the DNA encoding the MHC by amplifying the exons through polymerase chain reaction and identifying alleles through denaturing gradient gel electrophoresis. Wild populations of …


Practical Applications And Future Directions Of Genetic Code Expansion: Validation Of Novel Akt1 Substrates And The Design Of A Synthetic Auxotroph Strain Of B. Subtilis, Mcshane M. Mckenna Mar 2020

Practical Applications And Future Directions Of Genetic Code Expansion: Validation Of Novel Akt1 Substrates And The Design Of A Synthetic Auxotroph Strain Of B. Subtilis, Mcshane M. Mckenna

Electronic Thesis and Dissertation Repository

In Chapter 1, site-specifically phosphorylated variants of the oncogene Akt1 were made in Escherichia coli using the orthogonal translation system that enable genetic code expansion with phosphoserine. The differentially phosphorylated variants of Akt1 were used to validate newly predicted Akt1 substrates. The predicted target sites of the peptide substrates were synthesized and subjected to in vitro kinase assays to quantify the activity of each Akt1 phosphorylated variant towards the predicted peptide. A previously uncharacterized kinase-substrate interaction between Akt1 and a peptide derived from RAB11 Family Interacting Protein 2 (RAB11FIP2) was validated in vitro. Chapter 2 describes the preliminary development of …