Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Genetics and Genomics

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 206

Full-Text Articles in Molecular Biology

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova Jan 2024

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of …


Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Exploring The Interactions Between Sars-Cov-2 And Host Proteins., Sojan Shrestha Jul 2023

Exploring The Interactions Between Sars-Cov-2 And Host Proteins., Sojan Shrestha

School of Biological Sciences: Dissertations, Theses, and Student Research

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current pandemic, Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 is considered to be of zoonotic origin; it originated in non-human animals and was transmitted to humans. Since the early stage of the pandemic, however, the evidence of transmissions from humans to animals (reverse zoonoses) has been found in multiple animal species including mink, white-tailed deer, and pet and zoo animals. Furthermore, secondary zoonotic events of SARS-CoV-2, transmissions from animals to humans, have been also reported. It is suggested that non-human hosts can act as SARS-CoV-2 reservoirs where accumulated …


Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


Analysis Of Ssa4 Reporter Expression By Q-Pcr, Susveen Sharanshi, Rebecca Adams Apr 2023

Analysis Of Ssa4 Reporter Expression By Q-Pcr, Susveen Sharanshi, Rebecca Adams

Belmont University Research Symposium (BURS)

The synthesis of genome-encoded proteins via mRNA translation is integral to cell survival. In eukaryotes, such as S. cerevisiae, the mRNA that is produced in the nucleus must be exported to the cytoplasm for translation to occur, and this process is highly regulated. Specifically, the export of mRNA occurs via travel through nuclear pore complexes (NPCs), which are selective doorways embedded in the nuclear envelope. During cellular stress, such as heat shock, the cell needs to regulate gene expression to permit survival, and mRNA export is one step at which this occurs. At these high temperatures, a cell’s proteins …


Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta Mar 2023

Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sensory receptors across the entire tongue are engaged during eating. However, the tongue has distinctive regions with taste (fungiform and circumvallate) and non-taste (filiform) organs that are composed of specialized epithelia, connective tissues, and innervation. The tissue regions and papillae are adapted in form and function for taste and somatosensation associated with eating. It follows that homeostasis and regeneration of distinctive papillae and taste buds with particular functional roles require tailored molecular pathways. Nonetheless, in the chemosensory field, generalizations are often made between mechanisms that regulate anterior tongue fungiform and posterior circumvallate taste papillae, without a clear distinction that highlights …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk Apr 2022

Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk

Honors Scholars Collaborative Projects

All eukaryotic cells require that transcribed mRNAs undergo export form the nucleus to the cytoplasm where they can be translated into proteins. This process requires a host of proteins which are conserved between the unicellular budding yeast, S. cerevisiae, and humans. During this process, Mex67 and other associated proteins facilitate the mRNA to travel across the nuclear pore complex (NPC), doorways embedded in the nuclear envelope. Upon the exit of mRNA, Mex67 is released and recycled back into the nucleus to facilitate the export of more mRNA. This occurs through the action of Dbp5, whose activity is regulated through …


Investigation Of Oncogenic Ras And Endoplasmic Reticulum-Mitochondria Calcium Flux And Their Relationship In The Context Of Tumorigenesis, Emma Anderson Apr 2022

Investigation Of Oncogenic Ras And Endoplasmic Reticulum-Mitochondria Calcium Flux And Their Relationship In The Context Of Tumorigenesis, Emma Anderson

Senior Honors Theses

Intracellular calcium as a signaling molecule is a pervasive feature of cellular pathways, especially those that manage internal homeostasis and transitions through the cell cycle, so much so that regulated, responsive calcium flux between the endoplasmic reticulum (ER) and the mitochondria has been suggested to play a major role in cancer development. Another factor commonly implicated in tumorigenesis is RAS, an oncogene that controls signaling for many pathways that are also regulated by calcium. While both calcium and oncogenic RAS signaling are implicated in cancer development, possible links between them have yet to be determined. The identification of these links …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk, Rebecca Adams Phd Jan 2022

Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk, Rebecca Adams Phd

Belmont University Research Symposium (BURS)

All eukaryotic cells require that transcribed mRNAs undergo export form the nucleus to the cytoplasm where they can be translated into proteins. This process requires a host of proteins which are conserved between the unicellular budding yeast, S. cerevisiae, and humans. During this process, Mex67 and other associated proteins facilitate the mRNA to travel across the nuclear pore complex (NPC), doorways embedded in the nuclear envelope. Upon the exit of mRNA, Mex67 is released and recycled back into the nucleus to provide the export of more mRNA. This release occurs through the action of Dbp5, whose activity is regulated …


Dual Activities Of Acc Synthase: Novel Clues Regarding The Molecular Evolution Of Acs Genes, Chang Xu, Bowei Hao, Gongling Sun, Yuanyuan Mei, Lifang Sun, Yunmei Sun, Yibo Wang, Yongyan Zhang, Wei Zhang, Mengyuan Zhang, Yue Zhang, Dan Wang, Zihe Rao, Xin Li, Jeffery Shen, Ning Ning Wang Nov 2021

Dual Activities Of Acc Synthase: Novel Clues Regarding The Molecular Evolution Of Acs Genes, Chang Xu, Bowei Hao, Gongling Sun, Yuanyuan Mei, Lifang Sun, Yunmei Sun, Yibo Wang, Yongyan Zhang, Wei Zhang, Mengyuan Zhang, Yue Zhang, Dan Wang, Zihe Rao, Xin Li, Jeffery Shen, Ning Ning Wang

Life Sciences Faculty Research

Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for …


Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman Sep 2021

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman

Undergraduate Research Symposium

Auxins are important hormones in plants that regulate growth and development. Disruptions in the auxin biosynthesis pathway result in morphological changes in phenotypes in the model plant Arabidopsis thaliana, including differences in root and leaf formation. Mutations in the Tryptophan Aminotransferase of Arabidopsis (TAA1) and YUCCA (YUC4) genes interfere with the plant's ability to synthesize Indole-3-acetic acid (IAA), the primary auxin involved in plant development. IBR1 and IBR3 act in the multistep conversion of indole-3-butyric acid (IBA) to IAA. ILL2, IAR3, and ILR1 hydrolyze IAA-amino acid conjugates into free IAA. The goal of …


Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike Aug 2021

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike

Department of Biochemistry: Dissertations, Theses, and Student Research

Plant oils are an important source of food, fuel, and feed in our society today. The oil found in the seeds of plants is composed almost entirely of triacylglycerol (TAG) molecules, which consist of three fatty acids esterified to a glycerol backbone. As crude oil supplies decline, vegetable oils are gaining traction as a renewable substitute to petroleum-based materials in fuels, lubricants, and specialty oleochemicals. However, as it currently stands vegetable oils do not possess the properties necessary to fill the void of a petroleum free world.

To address this problem, plant biotechnologists have done extensive work on genetic engineering …


Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed Jun 2021

Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed

Honors Scholar Theses

Parkinson's Disease (PD) is a progressive neurodegenerative and movement disorder primarily caused by the degradation of dopaminergic neurons. Known markers of neurodegeneration in PD are Lewy Bodies, which are fibrillar aggregates that are found in the brains of PD patients. Lewy Bodies can accumulate from specific mutations in the SNCA gene that codes for alpha-synuclein, a protein enriched in presynaptic neurons. A mutated SNCA gene can cause conformational aggregates of alpha-synuclein to form toxic species mediating neuronal death. Research into alpha-synuclein has led to the discovery of a binding partner known as synphilin-1 that is also found in protein aggregates …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem May 2021

New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem

Pharmacy

Diabetes mellitus (DM) is a devastating metabolic disease. Recently, the cross-talk between insulin-secreting-β-cells and various organs has sparked much interest. SerpinB1 emerged as a novel hepatokine inducing β-cell proliferation. However, its role in type-2-DM (T2DM) patients has not been adequately studied. This study was designed to investigate its circulating levels in subjects with/without T2DM, and to study its association with β-cell function, as well as various glycemic-control and lipid-profile parameters. Anthropometric data and biochemical markers including fasting plasma glucose (FPG), HbA1C % and lipid profile parameters were measured in 55 T2DM patients, as well as 30 healthy nondiabetic subjects. Serum …


The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu Apr 2021

The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu

Senior Honors Theses

A previous study that introduced dietary folate to mice in the form of folic acid to determine if gene activity would be altered based on this biological molecule demonstrated that mice without folic acid had cognition deficits, and this phenomenon was correlated with altered gene expression in their brains. The included bioinformatic analysis revealed two main transcription factors that bind to proteins in the nucleus, and one is known as the Zinc Finger Protein 410 (Zfp410). Due to the lack of literature explaining the function of this transcription factor, this project is intended to analyze Zfp410 in detail from scratch. …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


Development Of A Dna Methylation Multiplex Assay For Body Fluid Identification And Age Determination, Quentin Gauthier Nov 2020

Development Of A Dna Methylation Multiplex Assay For Body Fluid Identification And Age Determination, Quentin Gauthier

FIU Electronic Theses and Dissertations

For forensic laboratories, the determination of body fluid origin of samples collected at a crime scene are typically presumptive and often destructive. However, given that in certain cases the presence of DNA is not in dispute and rather where the DNA came from is of primary concern, new methodologies are needed. Epigenetic modifications, such as DNA methylation, affect gene expression in every cell of every mammal. These DNA methylation patterns typically are observed as the addition of a methyl group on the 5’ carbon of a cytosine followed by guanine (CpG). Methylation patterns have been observed to change in response …


A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal Jul 2020

A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal

Pharmacy

Aims: Serine protease inhibitor B1 (SerpinB1) is a neutrophil elastase inhibitor that has been proved to be associated with type 2 diabetes mellitus and pancreatic β-cell proliferation. In this study, we investigated 2 SERPINB1 SNPs, rs114597282 and rs15286, regarding their association with diabetes risk and various anthropometric and biochemical parameters in Egyptian type 2 diabetic patients.

Materials and Methods: A total of 160 subjects (62 control and 98 type 2 diabetic patients) participated in this study. Various anthropometric and biochemical parameters were assessed. Genotyping assay for the two SNPs was done using TaqMan genotyping assays. The association of rs15286 variants …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith May 2020

Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith

Honors College

Muscular Dystrophy (MD) is characterized by varying severity and time-of-onset by individuals afflicted with the same forms of MD, a phenomenon that is not well understood. MD affects 250,000 individuals in the United States and is characterized by mutations in the dystroglycan complex. gmppb encodes an enzyme that glycosylates dystroglycan, making it functionally active; thus, mutations in gmppb cause dystroglycanopathic MD1 . The zebrafish (Danio rerio) is a powerful vertebrate model for musculoskeletal development and disease. Like human patients, gmppb mutant zebrafish present both mild and severe phenotypes. In order to understand the molecular mechanisms involved, we performed high-throughput RNA …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott Jan 2020

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. We researched tester strains B. subtilis and E. coli from the soil isolates obtained. We further verified if the isolates were common antibiotic bacteria. Unfortunately, this project heavily relied on biochemical tests, colony morphology, and Gram stains to reject or fail to reject our hypothesis. Our goal was to discover new antibiotic-producing bacteria that could be beneficial in combating ESKAPE strains. A proper PCR and DNA extraction would be required …


Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott Jan 2020

Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

Multidrug-resistant pathogens are the leading cause of nosocomial infection, which killed more than 30,000 people in the United States every year. Among these, ESKAPE strains bugs, which comprise six highly drug-resistant bacteria, pose the greatest challenge to the healthcare system. In order to fight the antibiotic-resistant crises, novel antibiotic-producers must be discovered. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. Pseudomonas was revealed to produce a zone of inhibition against Bacillus subtilis on LB media. The next step …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham Jan 2020

Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham

Mahurin Honors College Capstone Experience/Thesis Projects

All bacteria contain a multi-subunit RNA polymerase (RNAPs) that is essential for gene expression. Because of the centrality of these enzymes in cellular life, the structure and function of the various subunits is intensely studied. The primary sequence of the RNAP β’ subunit contains five cysteine residues that are highly conserved. Four of the cysteines coordinate a zinc atom and form the beta prime subunit zinc binding domain (ZBD). Mutation of any one of the ZBD cysteines is lethal to the cell. However, the role of the fifth residue (C58), which is located upstream of the ZBD cysteines, has not …


Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan Dec 2019

Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan

Computer Science Faculty Publications

Background: Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods cannot fully represent the topological features of biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current shallow machine learning-based methods are designed to handle the imbalanced characteristics. Results: We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale convolutional neural networks and a sampling technique to identify essential proteins. …