Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein Feb 2022

Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein

Dissertations, Theses, and Capstone Projects

Voltage gated sodium channels (VGSC) are membrane proteins that serve an important function in the central nervous system (CNS), peripheral nervous system (PNS), and cardiac muscles amongst others. The main function of VGSC is in the propagation of electrical signals by depolarizing excitable cells. Nine mammalian VGSC subtypes have been characterized, NaV1.1 – NaV1.9, that are expressed in a tissue specific manner, each with unique gating properties. Numerous diseases have been linked to defects in VGSC including epilepsy, mental retardation, long QT syndrome, and Brugada disease. Furthermore, these channels are one of the primary targets of …


Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu May 2018

Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu

Dissertations, Theses, and Capstone Projects

5' m7GpppN cap and the 3' poly adenosine (A) tail of eukaryotic mRNAs are key elements for recruiting translation initiation machinery in canonical translation initiation. Unlike host mRNAs, many viruses lack these elements and yet they are translated efficiently. Plant viruses, in particular, have complex structures within their untranslated regions (UTR) that allow them to bypass some cellular translation control steps. In Maize necrotic streak virus (MNeSV) 3' UTR, an I-Shaped RNA Structure (ISS) has been reported to mediate the virus translation initiation progress. 3’ ISS binding with eIF4F has been shown to facilitate translation. 5’ -3’ kissing …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang Sep 2017

Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang

Dissertations, Theses, and Capstone Projects

The Adipocyte Fatty Acid-Binding Protein (AFABP) is mainly expressed in fat cells. It can bind fatty acids and other lipophilic substances such as eicosanoids and retinoids. The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor protein that requires ligand binding to regulate the specific gene transcription. PPARγ is expressed at extremely high levels in adipose tissue, macrophages, and the large intestine, where it controls lipid adipogenesis and energy conversion. Moreover, it has been found that AFABP and PPARγ can form a complex in vivo. It is proposed that AFABP carries the ligand and enters into the nucleus where it …


A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati Sep 2017

A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati

Dissertations, Theses, and Capstone Projects

With increased understanding of their roles in signal transduction and metabolism, eicosanoids have emerged as important players in human health and disease. Mammalian prostanoids and related lipid mediators perform varied functions in different tissues and organs. Synthesized through the oxygenation of C20 polyunsaturated fatty acids, mammalian eicosanoids are both pro- and anti-inflammatory. The physiological contexts in which eicosanoid family members act at the cellular level are not well understood. In this study, we examined whether the genome of Drosophila melanogaster, a powerful model for innate immunity and inflammation, codes for the enzymes required for eicosanoid biosynthesis. We report the …


Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan Sep 2016

Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan

Dissertations, Theses, and Capstone Projects

In nature, peptide toxins are an abundant resource, produced both by marine and terrestrial organisms. A major target of these peptide toxins is the group of the highly important voltage-gated ion channels. Due to their high specificity and affinity, peptide toxins have been used for over a decade in discovery and characterization of voltage-gated ion channels. Although peptide toxins have been extensively characterized structurally, the structural characterization of eukaryotic voltage-gated sodium channels has seen much less progress, due to their large size and high hydrophobicity. Voltage-gated sodium channels play crucial roles in many physiological processes, and when these processes are …


Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed Sep 2016

Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed

Dissertations, Theses, and Capstone Projects

Topoisomerases are ubiquitous proteins that alter supercoiling in double stranded DNA (dsDNA) during transcription and replication and. vaccinia and the closely related poxvirus variola virus, at 314 amino acids in length, encode the smallest of the type I topoisomerases(TopIB). TopIB is a two domain protein that recognizes the sequence 5’-T/CCCTT, cleaves at the 3’-end and relaxes supercoiling through rotation. The C-terminal domain (CTD) alone contains the catalytic activity and specificity. Deletion of the N-terminal domain results in a greatly reduced rate of relaxation and rapid dissociation. Biochemical data suggests that the N-terminal domain (NTD) is important for pre-cleavage binding and …