Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan Jan 2021

On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan

Theses and Dissertations (Comprehensive)

Uncoupling proteins (UCPs) are regulated proton transporters of the mitochondrial inner membrane. UCP-mediated proton leak negatively impacts the rate of ATP synthesis. Despite the importance of their physiological role(s) in certain tissues, molecular aspects of UCPs’ structure-function relationships are not fully understood. The current study explores the tertiary and quaternary structure of UCP2, as well as its proton transport mechanism in lipid membranes. The proteins were expressed in the E. coli inner membrane, purified and reconstituted into liposomes. Proteins were characterized by semi-native SDS-PAGE. Circular dichroism spectroscopy (CD) and fluorescence quenching assays were utilized to study the conformation of proteins …


Structural Investigation Of Bcsc: Insight Into Periplasmic Transport During Cellulose Export, William Scott, Joel T. Weadge Jan 2019

Structural Investigation Of Bcsc: Insight Into Periplasmic Transport During Cellulose Export, William Scott, Joel T. Weadge

Theses and Dissertations (Comprehensive)

A biofilm can be defined by a community of microbes coexisting within a self-produced protective polymeric matrix. Exopolysaccharide (EPS) is a key component in biofilms and a contributor to their virulence and pathogenicity. The cellulose bacterial synthesis complex is one such EPS system that is found in many Enterobacteriaceae,including Escherichia coli and Salmonella spp., and is responsible for the production and secretion of the EPS cellulose. BcsC is the periplasmic protein responsible for the export of the exopolysaccharide cellulose and was the focus of this research. Sequence homology comparisons and structural predictions between BcsC, and the previously characterized alginate …


Structural And Functional Analysis Of Three Upregulated Gene Products, Tde0626, Tde1701, And Tde2714 From Treponema Denticola During Biofilm Formation, Jonah Nechacov Jan 2019

Structural And Functional Analysis Of Three Upregulated Gene Products, Tde0626, Tde1701, And Tde2714 From Treponema Denticola During Biofilm Formation, Jonah Nechacov

Theses and Dissertations (Comprehensive)

The progression of human chronic periodontitis within periodontal disease has been often linked to the presence of key pathogens, such as the presence of Treponema denticola, a late colonizer found in the deepening pockets of the gingival sulcus. This pathogen, as well as its associates Porphyromonas gingivalis and Tannerella forsythia, are classified as the ‘red complex’ and exist in a mixed biofilm during infection. It is within this biofilm state that previous transcriptomic analysis revealed a total of 126 genes that had an increase in their expression by 1.5-fold or greater in T. denticola. Three of these …


Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese Jan 2019

Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese

Theses and Dissertations (Comprehensive)

Biofilms are a survival mechanism commonly employed by communities of bacteria for adherence and protection. Bacteria produce a matrix of polymers (e.g. exopolysaccharides, such as cellulose) that allow them to exert control on their local environment. In the case of cellulose biofilms, acetylation (addition of acetate on carbohydrates) is paramount for polymer integrity and in some cases virulence. For this research, the wrinkly spreader (WS) genotype of the emergent human pathogen Achromobacter insuavis facilitates infections of the eyes of contact lens wearers and the lungs of Cystic Fibrosis patients (CF). Chronic infections have created a growing concern for the protective …


Expression, Purification, Functional Characterization And Crystallization Of Three Porphyromonas Gingivalis Gene Products, Katarina Mandic Jan 2019

Expression, Purification, Functional Characterization And Crystallization Of Three Porphyromonas Gingivalis Gene Products, Katarina Mandic

Theses and Dissertations (Comprehensive)

Dental biofilms are coupled polymicrobial aggregates that have attached to solid surfaces in the oral cavity. These collections of microorganisms are known to cause periodontal diseases that commence as localized inflammation of the gingiva and if untreated, eventually lead to irreversible alveolar bone resorption and tooth loss. Porphyromonas gingivalis is one of three periodontal pathogens that make up the “Red Complex”; a bacterial consortium responsible for the production of polysaccharide-rich biofilms that are essential to the inception and progression of periodontal disease. The dysbiosis and destructive inflammation caused by these organisms propel a self-sustained feed-forward loop that perpetuates periodontal disease. …