Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Biology

University of Massachusetts Amherst

2021

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Utilizing Fluorescence Microscopy To Characterize The Subcellular Distribution Of The Novel Protein Acheron, Varun Sheel Oct 2021

Utilizing Fluorescence Microscopy To Characterize The Subcellular Distribution Of The Novel Protein Acheron, Varun Sheel

Masters Theses

All cells carry the genetic machinery required to commit cell suicide; a process known as programmed cell death (PCD). While the ability to initiate PCD serves a number of useful purposes during development and homeostasis, misregulation of PCD is the underlying basis of most human diseases, including cancer, autoimmunity disorders and neurodegeneration. Using the tobacco hawkmoth Manduca sexta as a model organism, the Schwartz lab at UMass has demonstrated that PCD requires de novo gene expression and has cloned many death-associated genes. One of these genes encodes a novel protein that was named Acheron after one of the rivers of …


Pharmacological Chaperoning Of Human Lysosomal Neuraminidase 1, Di Chu May 2021

Pharmacological Chaperoning Of Human Lysosomal Neuraminidase 1, Di Chu

Doctoral Dissertations

Human lysosomal neuraminidase 1 (hNEU1) is an exo-a-sialidase which cleaves a(2-3) and a(2-6) linked sialic acids on glycoproteins in the lysosome. Deficiency of hNEU1 in the lysosome results in sialidosis, a lysosomal storage disease. Currently there is no effective treatment for sialidosis, which leads to a rising interest in discovering potential therapies. Here we presented a small molecule, α-D-N-acetylneuraminic acid (NANA), increases the protein amount and activity of both wild-type hNEU1 and three different hNEU1 mutations found in sialidosis patients in our mammalian cell system, suggesting that NANA works as a potential pharmacological chaperone for hNEU1 and provides …