Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue Dec 2018

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue

Dissertations & Theses (Open Access)

Transcription is strictly regulated by numerous factors including transcription coactivators. The p300 protein and its close paralogue CREB-binding protein (CREBBP, aka CBP) are well-known transcriptional coactivators that have intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely on their capabilities to bind to chromatin and to acetylate the histone substrates. However, the molecular mechanisms underlying the regulation of these processes are not fully understood.

Through combination of various biochemical, biophysical and molecular approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions as a histone reader that specifically binds the N-terminal tail of histone H3. Crystal …


Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino May 2017

Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino

Dissertations & Theses (Open Access)

The N-methyl-D-aspartate (NMDA) receptor is one member of a class of proteins known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory neurotransmission in the central nervous system, with the NMDA receptor standing out among these receptors for its requirement of a co-agonist, its magnesium-block-based coincidence detection, its slow kinetics, its calcium permeability, its allosteric modulation, and its especially important functional roles in synaptic plasticity, excitotoxicity, and more. In recent years, a wealth of structural information has come about describing endpoint structures to high resolution, but such structures are unable to fully resolve the movements …


Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy Dec 2014

Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy

Dissertations & Theses (Open Access)

STRUCTURAL INVESTIGATIONS OF LIGAND GATED ION CHANNELS

Swarna Ramaswamy, B.S

Advisor: Vasanthi Jayaraman, Ph.D.

Ion channels form an integral part of membrane proteins. In the nervous system including the central and the peripheral nervous system, ligand gated ion channels form a very important part of intercellular communications. They receive chemical signals and convert them to electrical signal, mainly by allowing ion passage across the cell membrane. Ion passage also translates into downstream signaling events. Faithful translation of these signals and transmittance is crucial for several physiological functions, implying that irregular ion channel function could lead to serious consequences.

This thesis …


Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran Dec 2011

Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran

Dissertations & Theses (Open Access)

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning.

Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic …