Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

Electronic Theses and Dissertations

Theses/Dissertations

SIP470

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Localization Of Sip470, A Plant Lipid Transfer Protein In Nicotiana Tabacum, Shantaya Andrews Dec 2018

Localization Of Sip470, A Plant Lipid Transfer Protein In Nicotiana Tabacum, Shantaya Andrews

Electronic Theses and Dissertations

SABP2-interacting protein 470 (SIP470), a non-specific lipid transfer protein (nsLTP), was discovered in a yeast two-hybrid screening using SABP2 as bait and tobacco leaf proteins as prey. SABP2 is an important enzyme in systemic acquired resistance that converts salicylic acid to methyl salicylate. Localization studies are an important aspect to understanding the biological function of proteins. nsLTPs are generally considered apoplastic proteins and has been localized intracellularly and extracellularly. Transient expression shows highest expression of SIP470-eGFP at 2 days post infiltration into Nicotiana benthamiana. Confocal microscopy showed localization near the periphery of the cell. Subcellular localization using differential centrifugation showed …


Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam Aug 2016

Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam

Electronic Theses and Dissertations

SIP470, a putative tobacco lipid transfer protein, was identified in a yeast two-hybrid screen to interact with SABP2. SABP2 is a critical role in SA-mediated signaling in tobacco and other plants. In vitro studies using purified recombinant SIP470 confirmed that it is a lipid binding protein. In an attempt to determine its role in mediating stress responses, Arabidopsis T-DNA insertion knockout lines lacking SIP470 homolog were used for the analysis. These mutant plants were defective in basal resistance against microbial pathogens. Expression of defense gene PR-1 was also delayed in these mutant plants. Interestingly, these mutant plants were not defective …