Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Molecular Biology

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero Apr 2023

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero

Doctoral Dissertations

Nitrogen is essential for plant tissue growth but is often a limited resource in soils. Many legumes overcome this limitation by entering a symbiotic association with soil microbes, called rhizobia, which provide nitrogen to the plant while rhizobia receive fixed carbon. To successfully form a symbiosis, the host and symbiont exchange a series of molecular signals. One major obstacle during this interaction is the host's innate immune system, which becomes active upon rhizobial detection. It is therefore the main focus of this thesis to identify the mechanisms that modulate host immunity. In the subsequent chapters, we focus on a rhizobial …


Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer May 2022

Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer

Doctoral Dissertations

Plant nodulin 26 intrinsic proteins are categorized into three groups (NIP I, II, and III) based on pore architecture. NIP II and III participate in metalloid nutrition, whilst the function of a third (NIP I) is less understood. Here we investigate the physiological function of one NIP I protein (Arabidopsis thaliana NIP2;1) as a lactic acid channel, and also explore the structural basis for metalloid and water permeability of NIP I and NIP II proteins in general. In addition, a strategy was developed for the purification and crystallization of soybean nodulin 26 as a step towards structure determination of a …


Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field Dec 2021

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field

Doctoral Dissertations

In response to the energy crisis resulting from submergence stress and hypoxia, the model plant Arabidopsis thaliana limits non-essential mRNA translation, and accumulates cytosolic stress granules. Stress granules are phase-separated mRNA-protein particles that partition transcripts for various fates: storage, degradation, or return to translation after stress alleviation. Another response by the plant cell to low oxygen stress is the induction of the turnover pathway autophagy. Stress granule regulation by autophagy occurs by a ‘granulophagy’ pathway in yeast and mammalian systems through which parts or whole stress granules are degraded. Whether this occurs in plants has not been investigated.

A connection …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez May 2021

Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez

Doctoral Dissertations

Communication is an essential component to all living organisms. In

plants, the additional cell wall surrounding each cell adds a layer of complexity

not observed in animals. To overcome the literal wall separating cells, plants

have evolved specialized pores to connect adjacent cells. Plasmodesmata (PD)

allow plants to have a continuous cytoplasm between cells. Although

plasmodesmata may appear simple and lack regulation, their structural

components and their regulatory machinery is complex and not well understood.

Organelle-to-nucleus-to-plasmodesmata signaling (ONPS) have been worked as

a leading model for a possible regulatory mechanism. Many of the details of

organelle-to-nucleus retrograde signaling pathways have …


Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao Dec 2020

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao

Doctoral Dissertations

Tropical forests, relative to other terrestrial ecosystems, exchange the largest amount of carbon with the atmosphere and also constitute a significant carbon sink. However, nutrient limitation, particularly of phosphorus (P), could limit growth of tropical forests and their function with the global carbon cycle. Thus, understanding root mechanisms to acquire P is necessary to representing the P cycle and corresponding interactions with plant growth. A large portion of total soil P in tropical forests occurs in organic forms, only accessible through root and microbial production of phosphatase enzymes. These phosphatase enzymes mineralize organic P into orthophosphate, the form of P …


Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis Aug 2020

Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis

Doctoral Dissertations

Peptide identification is at the core of bottom-up proteomics measurements. However, even with state-of the-art mass spectrometric instrumentation, peptide level information is still lost or missing in these types of experiments. Reasons behind missing peptide identifications in bottom-up proteomics include variable peptide ionization efficiencies, ion suppression effects, as well as the occurrence of chimeric spectra that can lower the efficacy of database search strategies. Peptides derived from naturally abundant proteins in a biological system also have better chances of being identified in comparison to the ones produced from less abundant proteins, at least in regular discovery-based proteomics experiments. This dissertation …


Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther Jul 2020

Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther

Doctoral Dissertations

Many legumes form a symbiosis with nitrogen-fixing bacteria found in the soil. This relationship is beneficial to both the plant and the bacteria; the plant receives nitrogen that is otherwise limited, and the bacteria receive fixed carbon. Upon sensing the bacteria, the plant forms a new organ (the nodule) where the bacteria are housed within the cells. Many genes are required for the proper formation and function of nodules; this dissertation is broadly focused on how genes required for nitrogen-fixing symbiosis are co-opted from other cellular processes and how they are specialized for symbiosis. Protein trafficking from the plant to …


The Interplay Between Polarity Regulators, Calcium, And The Actin Cytoskeleton During Tip Growth, Carlisle Bascom Jr Oct 2018

The Interplay Between Polarity Regulators, Calcium, And The Actin Cytoskeleton During Tip Growth, Carlisle Bascom Jr

Doctoral Dissertations

Plant cell growth is a meticulously regulated process whereby the cell wall is selectively loosened to allow for turgor-pressure driven expansion. The rate of expansion must equal delivery of new material, or the cell will lyse. In many plant cells, this process happens diffusely around the cell. However, a number of plant cells have anisotropic shapes that require exquisite spatial control of secretion. One simple example of anisotropic patterning is tip growth; highly polarized cell expansion utilized by pollen tubes, root hairs, and moss protonemata. Investigating the role various molecules have in tip growth sheds light on how plant cells …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis Aug 2016

Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis

Doctoral Dissertations

The natural recalcitrance of plant cell walls is a major commercial hurdle for plant biomass to be converted into a viable energy source as alternative to fossil fuels. To circumvent this hurdle manipulation of carbohydrate enzymes active in the cellulose and hemicellulose portions of the plant cell wall can be utilized to improve feedstocks. Production of cellulolytic enzymes by plants have been evaluated for reducing the cost associated with lignocellulosic biofuels. Plants have successfully served as bioreactors producing bacterial and fungal glycosyl hydrolases, which have altered plant growth to improve saccharification. A bioprospecting opportunity lies with the utilization of insect …


Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey Aug 2016

Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey

Doctoral Dissertations

In plants, ethylene functions as a hormone regulating many growth and developmental processes. Ethylene receptors in plants resemble bacterial two-component signaling systems. Because of this it, ethylene receptors are thought to have been acquired by gene transfer from the cyanobacterial endosymbiont that lead to the development of the chloroplast. However, prior to this work, functional ethylene receptors were thought to only be found in green plants. Here, we show that the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) contains a functional ethylene receptor, SynEtr1. SynEtr1 contains a predicted ethylene binding domain, a photosensory cyanobacteriochrome (CBCR) domain, and a histidine …


Nanocomposite Adhesive Of English Ivy (Hedera Helix): Bioproduction, Nanoparticle Isolation, And Molecular Analysis, Jason Neil Burris Aug 2016

Nanocomposite Adhesive Of English Ivy (Hedera Helix): Bioproduction, Nanoparticle Isolation, And Molecular Analysis, Jason Neil Burris

Doctoral Dissertations

English ivy naturally produces organic nanoparticles from its adventitious root hairs, and possesses characteristics that may allow them to replace metal-based nanoparticles in common applications, such as sunscreen. At the onset of the research, it was hypothesized that a physical mechanism of attachment, similar to the gecko footpad, was used to generate the adhesive force for attachment; however, through the results obtained from recent work, it is clear that a biochemical mechanism is involved in the generation of the strength of adhesion. Therefore, the goal of this research was to provide a better understanding of the genetic basis of nanoparticle …


Novel Advancements For Improving Sprout Safety, Kyle S. Landry Jul 2016

Novel Advancements For Improving Sprout Safety, Kyle S. Landry

Doctoral Dissertations

All varieties of bean sprouts (mung bean, alfalfa, broccoli, and radish) are classified as a “super-food” and are common staples for health conscious consumers. Along with the proposed health benefits, there is also an inherent risk of foodborne illness. When sprouts are cooked, there is little risk of illness. The purpose of this dissertation was to explore novel techniques to minimize or prevent the incidence of foodborne illness associated with the consumption of sprouts. Three areas were investigated: 1) the use of a biocontrol organism, 2) the use of a novel spontaneous carvacrol nanoemulsion, and 3) the influence of the …


Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi Aug 2015

Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi

Doctoral Dissertations

Waterlogging stress leads to a crisis in energy metabolism and the accumulation of toxic metabolites due to the hypoxic and/or anoxic environment associated with this condition. To respond and adapt to this situation, higher plants employ an integrated genetic program that leads to the induction of anaerobic response polypeptide genes that encode metabolic and signaling proteins involved in altering metabolic flow and other adaptive responses. The study presented here shows that the Arabidopsis thaliana calmodulin-like protein CML38 is calcium sensor protein that serves as a member of the core anaerobic response gene family and is involved in modulating the survival …


Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li Dec 2014

Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li

Doctoral Dissertations

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional channels of uncharged metabolites and water. They share the same canonical hourglass fold as the aquaporin family. The aromatic arginine (ar/R) selectivity filter controls transport selectivity based on size, hydrophobicity, and hydrogen bonding with substrates. In Arabidopsis thaliana, NIP II subclass proteins contain a conserved ar/R “pore signature” that is composed of Alanine at the helix 2 position (H2), Valine/Isoleucine at the helix 5 position (H5), and an Alanine (LE1) and an invariant Arginine (LE2) at the two loop E positions. In this study, …


Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce Aug 2013

Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce

Doctoral Dissertations

Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in rural or developing areas. Five oils extracted from Pittosporum resiniferum, Copaifera reticulata, and surrogate oils for Cymbopogon flexuosus, C. martinii, and Dictamnus albus in B20 blends were sent for ASTM International biodiesel testing and run in homogenous charge combustion ignition engines to determine combustion properties and emissions. All oils tested lowered cloud point. Oils derived from Copaifera reticulata also lowered indicated specific fuel consumption and had emissions similar to the ultra-low sulfur diesel control. Characterization …


Soybean Nodulin 26: A Channel For Water And Ammonia At The Symbiotic Interface Of Legumes And Nitrogen-Fixing Rhizobia Bacteria, Jin Ha Hwang May 2013

Soybean Nodulin 26: A Channel For Water And Ammonia At The Symbiotic Interface Of Legumes And Nitrogen-Fixing Rhizobia Bacteria, Jin Ha Hwang

Doctoral Dissertations

During the infection and nodulation of legume roots by soil bacteria of the Rhizobiaceae family, the invading endosymbiont becomes enclosed within a specialized nitrogen-fixing organelle known as the "symbiosome". In mature nodules the host infected cells are occupied by thousands of symbiosomes, which constitute the major organelle within this specialized cell type. The symbiosome membrane is the outer boundary of this organelle which controls the transport of metabolites between the symbiont and the plant host. These transport activities include the efflux of the primary metabolic product of nitrogen fixation and the uptake of dicarboxylates as an energy source to support …


Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham May 2013

Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham

Doctoral Dissertations

Historically, there has been tremendous synergy between biology and analytical technology, such that one drives the development of the other. Over the past two decades, their interrelatedness has catalyzed entirely new experimental approaches and unlocked new types of biological questions, as exemplified by the advancements of the field of mass spectrometry (MS)-based proteomics. MS-based proteomics, which provides a more complete measurement of all the proteins in a cell, has revolutionized a variety of scientific fields, ranging from characterizing proteins expressed by a microorganism to tracking cancer-related biomarkers. Though MS technology has advanced significantly, the analysis of complicated proteomes, such as …