Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field Dec 2021

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field

Doctoral Dissertations

In response to the energy crisis resulting from submergence stress and hypoxia, the model plant Arabidopsis thaliana limits non-essential mRNA translation, and accumulates cytosolic stress granules. Stress granules are phase-separated mRNA-protein particles that partition transcripts for various fates: storage, degradation, or return to translation after stress alleviation. Another response by the plant cell to low oxygen stress is the induction of the turnover pathway autophagy. Stress granule regulation by autophagy occurs by a ‘granulophagy’ pathway in yeast and mammalian systems through which parts or whole stress granules are degraded. Whether this occurs in plants has not been investigated.

A connection …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman Sep 2021

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman

Undergraduate Research Symposium

Auxins are important hormones in plants that regulate growth and development. Disruptions in the auxin biosynthesis pathway result in morphological changes in phenotypes in the model plant Arabidopsis thaliana, including differences in root and leaf formation. Mutations in the Tryptophan Aminotransferase of Arabidopsis (TAA1) and YUCCA (YUC4) genes interfere with the plant's ability to synthesize Indole-3-acetic acid (IAA), the primary auxin involved in plant development. IBR1 and IBR3 act in the multistep conversion of indole-3-butyric acid (IBA) to IAA. ILL2, IAR3, and ILR1 hydrolyze IAA-amino acid conjugates into free IAA. The goal of …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Analysis Of Symptom Expressions And Transmission Rates Caused By The Plant Pathogen Phytophthora Ramorum On Native Chaparral Plants From The Genus Arctostaphylos, Bharati Gaonker May 2021

Analysis Of Symptom Expressions And Transmission Rates Caused By The Plant Pathogen Phytophthora Ramorum On Native Chaparral Plants From The Genus Arctostaphylos, Bharati Gaonker

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Phytophthora ramorum is the causal agent of Sudden Oak death (SOD), ramorum dieback and ramorum leaf blight which affect both forest environments and nurseries. This oomycete pathogen has had a huge economic impact on the nursery and lumber industry. Forests in California have experienced substantial mortality of oaks affecting the forest dynamics and diversity. Our research investigates four native species and two ornamental cultivars of plants, which belong to the genus Arctostaphylos (manzanita) and are considered to be new hosts for P. ramorum in the chaparral ecosystem of California. Symptom expression and transmission rates were analyzed on Arctostaphylos glauca, …


Resistance Screening And Association Mapping For Resistance To The Downy Mildew Pathogen Of Spinach, Dotun Olaoye May 2021

Resistance Screening And Association Mapping For Resistance To The Downy Mildew Pathogen Of Spinach, Dotun Olaoye

Graduate Theses and Dissertations

Spinach is an important cool leafy vegetable cultivated around the world, with large scale production in California and Arizona in the U.S. Spinach is a highly nutritious vegetable beneficial in the human diet. Spinach is affected by a number of biotic stressors. Downy mildew, caused by the oomycete pathogen Peronospora effusa, is a major threat to spinach as it affects the leaf quality and impacts the economic value of spinach. Several efforts have led to the development of resistant genotypes/cultivars to this pathogen. However, few studies have examined the genetics of resistance to the downy mildew pathogen in detail. This …


Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez May 2021

Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez

Doctoral Dissertations

Communication is an essential component to all living organisms. In

plants, the additional cell wall surrounding each cell adds a layer of complexity

not observed in animals. To overcome the literal wall separating cells, plants

have evolved specialized pores to connect adjacent cells. Plasmodesmata (PD)

allow plants to have a continuous cytoplasm between cells. Although

plasmodesmata may appear simple and lack regulation, their structural

components and their regulatory machinery is complex and not well understood.

Organelle-to-nucleus-to-plasmodesmata signaling (ONPS) have been worked as

a leading model for a possible regulatory mechanism. Many of the details of

organelle-to-nucleus retrograde signaling pathways have …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …