Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

The Role Of Uchl1 In Skeletal Muscle Development And Regeneration, Ryan Antony Jan 2024

The Role Of Uchl1 In Skeletal Muscle Development And Regeneration, Ryan Antony

Dissertations and Theses

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that was originally discovered in neurons. UCHL1 is also expressed in skeletal muscle, but its functions remain to be fully understood. Myogenesis is a critical process involved in embryonic development, growth, and regeneration following injury. Skeletal muscle injury is prevalent in trauma and surgical procedures, and skeletal muscle ischemia-reperfusion (IR) injury is a common yet dangerous public health problem. Here we reported that UCHL1 negatively affects muscle growth during aging as well as the regeneration process following IR injury. First, we observed that UCHL1 knockdown in C2C12 myoblasts resulted in increased …


Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon Dec 2017

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon

Dissertations & Theses (Open Access)

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase since it was first cloned in 1999. Continued efforts since this time have been dedicated to characterizing the structure and function of SIK1. Such research has laid the ground work for our understanding of SIK1 action and regulation in tissue and stimuli dependent manners. The fundamental findings of this dissertation continue in this tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, and intracellular metabolic and mitochondrial regulation by this …