Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa May 2022

Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa

Theses & Dissertations

Mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells) are the governors of innate immunity which is the body’s first line of defense against microbial pathogens. They act beneficial or detrimental. They are crucial for an effective non-specific immune response to invading pathogens by engulfing, destroying, then eliciting an adaptive specific immune response. Given their pivotal functions in the host immune defense, studying MP immune responses in disease is paramount important for understanding disease pathobiology and uncovering therapeutic strategies.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the driver of acute respiratory distress syndrome (ARDS) in coronavirus disease 2019 (COVID-19) amongst …


Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman Dec 2018

Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman

Boise State University Theses and Dissertations

Parkinson’s Disease (PD) is an idiopathic disorder with no known cure. With number of cases steadily rising around the world, it is imperative to turn to the underlying cellular and molecular mechanisms of the disease manifestation and neurodegeneration to craft novel modes of therapy. VPS35 is one of the few genes that have identified and definitively linked to familial PD. The particular mutation that has been associated is known to cause dysfunction of a key cellular process known as autophagy. This process is primarily responsible for clearance of unwanted, damaged or misfolded proteins, among other things. Our study reveals an …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Susceptibility Of Parkinson’S Disease Following Mild Blast Traumatic Brain Injury, Glen Howel Galicia Acosta Jul 2015

Susceptibility Of Parkinson’S Disease Following Mild Blast Traumatic Brain Injury, Glen Howel Galicia Acosta

Open Access Theses

Blast injury-induced neurotrauma (BINT) is steadily increasing in prevalence due to escalated terror activity and constitutes the signature injury associated with current military conflicts. BINT produces significant neurological deficiencies and there is a growing concern that the injury may produce long-term consequences that affect the resilience and the performance of soldiers. One of the potential consequences is an increased susceptibility to Parkinson's disease (PD). A vital goal aimed at curtailing the post-deployment long-term consequences of blast injury-induced neurotrauma is to further our knowledge of pathogenic mechanisms responsible for the escalation of post injury diseases. The purpose of this project is …


Dopaminergic Innervation Of The Subventricular Zone In The Murine Brain, Linda Beth Drozdowicz May 2010

Dopaminergic Innervation Of The Subventricular Zone In The Murine Brain, Linda Beth Drozdowicz

Honors Scholar Theses

The subventricular zone (SVZ) is one of two areas in the brain that, in a healthy mouse, continually generate neurons throughout adulthood. While it was previously thought that only the A9 neurons of the substantia nigra sent dopaminergic afferents to the SVZ, recent studies suggest that the A10 neurons of the ventral tegmental area may innervate this area. This project has aimed to discover which, if either, model is correct.

Examination of the Aphakia (AK) mouse was used to determine the role of distinct midbrain regions in SVZ regulation. Additionally, intraperitoneal injections of the chemical MPTP were used to deduce …