Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Dissertations & Theses (Open Access)

Theses/Dissertations

Molecular chaperones

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope Aug 2014

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope

Dissertations & Theses (Open Access)

The majority of proteins require molecular chaperones to assist their folding into tertiary and quaternary structures. Certain stresses can compromise the weak hydrophobic forces responsible for these structures and lead to protein unfolding, misfolding, and aggregation. Aggregates of proteins are hallmarks of devastating diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Fortunately, bacteria, plants, and fungi have a potent disaggregase, named Hsp104 in Saccharomyces cerevisiae. Recently, heat-induced aggregates, termed Q-bodies, were found to contain three molecular chaperones: Hsp70, Hsp104, and Hsp42. Their coalescence from small puncta into larger inclusions required Hsp104. During glucose deprivation, a stress that isn’t known to …