Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Dissertations & Theses (Open Access)

Theses/Dissertations

Chaperones

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia May 2017

Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia

Dissertations & Theses (Open Access)

Molecular chaperones ensure protein quality during protein synthesis, delivery, damage repair, and degradation. The ubiquitous and highly conserved molecular chaperone 70-kDa heat-shock proteins (Hsp70s) are essential in maintaining protein homeostasis by cycling through high and low affinity binding of unfolded protein clients to facilitate folding. The Hsp110 class of chaperones are divergent relatives of Hsp70 that are extremely effective in preventing protein aggregation but lack the hallmark folding activity seen in Hsp70s. Hsp110s serve as Hsp70 nucleotide exchange factors (NEF) that facilitate the Hsp70 folding cycle by inducing release of protein substrate from Hsp70, thus recycling the chaperone for a …


Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams May 2014

Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams

Dissertations & Theses (Open Access)

The Hsp70 class of molecular chaperones play critical roles in protein homeostasis via an ATP-dependent folding cycle. Cytosolic Hsp70s in the budding yeast Saccharomyces cerevisiae, Ssa and Ssb, interact with up to three distinct nucleotide exchange factors (NEFs) homologous to human counterparts; Sse1/Sse2/HSP110, Fes1/HspBP1, and Snl1/Bag1. In an effort to understand the differential functional contributions of the cytosolic NEFs to protein homeostasis (“proteostasis”), I carried out comparative genetic, biochemical and cell biological analyses. For these studies, I developed protocols to monitor protein disaggregation and reactivation in a near real-time coupled assay that revealed the importance of aggregate dynamics in the …