Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Molecular Biology

Vircy-Seq : A Protocol For Characterizing Viral Activity, Tyler James Dion Dec 2022

Vircy-Seq : A Protocol For Characterizing Viral Activity, Tyler James Dion

Legacy Theses & Dissertations (2009 - 2024)

The main purpose of pharmaceutical production is to produce safe effective medicine for patient use. In an effort to ensure patient safety constant surveillance for viruses takes place. The detection of a viral nucleic acid in a pharmaceutical production setting results in investigations to assess its infectious potential. This is an intensive, expensive process that entails many tests such as the observation of hemadsorption, cytopathic effects (CPE), and more. These tests are typically specific and only capture certain viruses, as factors like CPE can only be observed in some viral species. A new investigational method that is effective on all …


Characterization Of A Putative Helicase In Rifampicin Resistance Of Mycobacterium Abscessus:, Aavrati Saxena May 2021

Characterization Of A Putative Helicase In Rifampicin Resistance Of Mycobacterium Abscessus:, Aavrati Saxena

Legacy Theses & Dissertations (2009 - 2024)

Mycobacterium abscessus (Mab), a non-tuberculous environmental mycobacterium is one of the emerging pathogens. The number of Mab infections has doubled in the past decade. It is also an opportunistic pathogen usually infecting immunocompromised individuals and causing numerous skin and soft tissue infections. It commonly causes lung infections in people who are already infected with one or other lung infections such as tuberculosis. The treatment of Mab infections is difficult because of its intrinsic resistance to most of the antibiotics available. This project studies Rifampicin (RIF) resistance in Mab, as RIF is a well-established treatment for other mycobacterial infections including tuberculosis, …


Host Factors Affecting Group Ii Intron Retrotransposition, Justin Michael Waldern Jan 2021

Host Factors Affecting Group Ii Intron Retrotransposition, Justin Michael Waldern

Legacy Theses & Dissertations (2009 - 2024)

Group II introns are self-splicing mobile elements that are thought to be the evolutionary ancestors of eukaryotic retrotransposons, the spliceosome, and spliceosomal introns. Yet, little is known about how group II introns have coevolved within their native hosts or about the corresponding host biology.Using the Ll.LtrB intron in its native host, Lactococcus lactis, I first sought to identify host factors that influence retrotransposition. Since retrotransposition can be costly to the host organism, group II introns must achieve a delicate balance between self-proliferation and host preservation. By utilizing the native host organism, my goal was to unearth retrotransposition-related mechanisms that have …


The Phosphodiesterase, Rv0805, Is An Unheralded Component Of Tb Complex Mycobacterial Physiology In And Beyond Camp Homeostasis, James R. Mcdowell Jan 2021

The Phosphodiesterase, Rv0805, Is An Unheralded Component Of Tb Complex Mycobacterial Physiology In And Beyond Camp Homeostasis, James R. Mcdowell

Legacy Theses & Dissertations (2009 - 2024)

Phosphodiesterases (PDEs) are integral components of 3’,5’-cyclic adenosine monophosphate (cAMP) signaling pathways by degrading cAMP to modulate the concentration, duration, and localization of the cAMP signal which maintains the specificity of cAMP pathways. The human pathogen, Mycobacterium tuberculosis (Mtb) has a unique cAMP network architecture with at least 15 adenylyl cyclases (ACs) that generate cAMP, but only one characterized PDE, Rv0805, which is found exclusively in pathogenic mycobacteria. Rv0805 can influence Mtb cAMP levels but the absence of Rv0805 orthologs in non-pathogenic mycobacteria and apparent separation of Rv0805 from cAMP directed roles led to numerous questions surrounding PDE function in …


Retrotransposon-Mediated Transduction Of An Environmental Cue To Regulate Centrosome Fate, Shawn Patrick Murphy Jan 2021

Retrotransposon-Mediated Transduction Of An Environmental Cue To Regulate Centrosome Fate, Shawn Patrick Murphy

Legacy Theses & Dissertations (2009 - 2024)

In 1969, the enrichment of mobile element repeat sequences led Britton and Davidson to propose the hypothesis that gene expression in higher eukaryotes is regulated through the exaptation of mobile elements. In this work, I have explored the hypothesis that mobile elements can also be harnessed by the host to regulate asymmetric cell division, thereby determining cell fate. Retrotransposons are ubiquitous eukaryotic mobile elements that transpose through an RNA intermediate. They are often active in cell types that divide asymmetrically to yield daughter cells with different fates, such as embryonic stem cells, germline stem cells, neuronal stem cells and the …


Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller Jan 2020

Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller

Legacy Theses & Dissertations (2009 - 2024)

Translation is a crucial mechanism for generating proteins to carry out cellular processes and for ensuring proper cell functions. Ribosomes are at the center of translation and are complex pieces of machinery. They consist of at least 80 core eukaryotic ribosomal proteins, which are conserved from prokaryotes, and four ribosomal RNAs (rRNAs): 18S, 28S, 5,8A 5S. In addition, numerous translation factors aid the ribosome in protein production. While ribosomes are typically described by these core features, they are known to exist in a heterogenous pool with variations in protein composition, modifications of rRNA, and an assortment of non-ribosomal proteins that …


Adaptation Of Vibrio Cholerae O1 To Protective, Lipopolysaccharide-Specific Antibodies In The Intestinal Lumen, Danielle Elizabeth Baranova Jan 2020

Adaptation Of Vibrio Cholerae O1 To Protective, Lipopolysaccharide-Specific Antibodies In The Intestinal Lumen, Danielle Elizabeth Baranova

Legacy Theses & Dissertations (2009 - 2024)

The outer membrane (OM) of Gram-negative enteric pathogens like Vibrio cholerae is a barrier against host defense factors, as well as a sensor of physical and chemical stimuli that the bacteria encounter in the gastrointestinal tract. The OM is also the primary target of the mucosal immune response, which consists of secretory antibodies primarily directed against lipopolysaccharide (LPS). ZAC-3 is a monoclonal antibody (MAb) that targets the conserved core/lipid A region of LPS of the pandemic V. cholerae O1 serotype. In a neonatal mouse model, passively administered ZAC-3 IgG has been shown to reduce the ability of V. cholerae to …


Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte Jan 2019

Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte

Legacy Theses & Dissertations (2009 - 2024)

Transcription termination factor Rho is an essential protein in Escherichia coli and related bacteria. The primary function of Rho is to clear unproductive RNA polymerases from the DNA template to minimize negative effects associated with uncontrolled transcription. Although most of the Rho termination events are constitutive, premature Rho-mediated termination was observed at 3% of all affected transcripts indicating active regulation of Rho activity. In this work, we investigated the regulatory mechanism behind premature Rho-dependent transcription termination in two unrelated genes: suhB and topAI. We show that in both cases transcription is terminated inside the coding gene as a consequence of …


Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy Jan 2019

Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy

Legacy Theses & Dissertations (2009 - 2024)

DksA is a bacterial gene regulator that functions synergistically with the stress alarmone ppGpp to mediate the stringent response. DksA also functions independently of ppGpp to regulate transcription of a number of genes. DksA function is dependent on its binding affinity to RNA polymerase and requires specific interactions between RNAP and catalytic amino acids located on the coiled coil tip, D74 and A76. While much of the previous work on DksA has focused on understanding the mechanisms of action and the numerous gene targets for transcriptional regulation, little is known about the mechanisms by which DksA expression and function may …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …


Cyclic Adenosine Monophosphate Signaling In Mycobacterium Tuberculosis : New Insights Into A Universal Second Messenger, Richard Mcpherson Johnson Jan 2018

Cyclic Adenosine Monophosphate Signaling In Mycobacterium Tuberculosis : New Insights Into A Universal Second Messenger, Richard Mcpherson Johnson

Legacy Theses & Dissertations (2009 - 2024)

Despite being the focus of intense research for many years Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the deadliest bacterial pathogen plaguing mankind today. Humans are the sole host and reservoir for Mtb, and Mtb has coevolved closely with its human host for thousands of years. Mtb currently infects over two billion people worldwide and over 1.5 million people die from TB each year, arguably making Mtb the most successful bacterial pathogen on the planet.


A Tale Of Two Regulators : Characterization Of The Novel Transcription Factor Abmr And The Small Non-Coding Rna Mcr11 In Mycobacterium Tuberculosis, Roxanne Candice Girardin Jan 2017

A Tale Of Two Regulators : Characterization Of The Novel Transcription Factor Abmr And The Small Non-Coding Rna Mcr11 In Mycobacterium Tuberculosis, Roxanne Candice Girardin

Legacy Theses & Dissertations (2009 - 2024)

Genes of unknown function make up nearly one third of Mtb’s genome (Cole,


Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan Jan 2017

Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan

Legacy Theses & Dissertations (2009 - 2024)

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans, is an intracellular pathogen that infects millions of people every year. Mtb can survive inside the host for extended periods of time by sensing and adapting to the host environmental stressors. Transcriptional gene regulation plays a critical role in this adaptation. This dissertation focuses on understanding the structural and functional aspects of one such transcriptional regulatory unit, Cmr (Rv1675c), in Mtb.


Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn Jan 2017

Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn

Legacy Theses & Dissertations (2009 - 2024)

The human response to environmental carcinogens, some of which require metabolic activation, is highly variable. Factors such as environment, lifestyle, and genetics all influence the rates of exposure to and ultimate bioactivation of these compounds. Genetic factors include mutations to cell-cycle regulation, cell proliferation, and DNA repair genes; however, epidemiological studies may lack significance due to inadequate patient numbers. We used budding yeast as a model organism to determine genetic susceptibility to food-associated carcinogens, including aflatoxin (AFB1) and heterocyclic aromatic amines (HAAs). Budding yeast does not contain P450s that activate these compounds, so expression vectors were induced that contain human …


Francisella Tularensis Catalase Restricts Immune Function By Impairing Trpm2 Channel Activity, Nicole Lynn Flaherty Jan 2015

Francisella Tularensis Catalase Restricts Immune Function By Impairing Trpm2 Channel Activity, Nicole Lynn Flaherty

Legacy Theses & Dissertations (2009 - 2024)

As an innate defense mechanism, macrophages produce reactive species that weaken pathogens and serve as secondary messengers to modify signaling responses involved in immune function. The gram-negative bacterium F. tularensis utilizes its antioxidant armature to limit the host immune response but the mechanism behind this suppression has not been defined. Here we establish that F. tularensis limits Ca2+ entry thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild-type (LVS) or catalase deficient F. tularensis (∆katG) show distinct profiles in their H2O2 scavenging capacity, 1 pM/sec and 0.015 pM/sec, respectively. Murine alveolar macrophages infected with ∆katG display distinct …


The Impact Of Environment On Virulence Of The Pathogenic Yeast Cryptococcus Gattii, Deborah Jean Springer Jan 2009

The Impact Of Environment On Virulence Of The Pathogenic Yeast Cryptococcus Gattii, Deborah Jean Springer

Legacy Theses & Dissertations (2009 - 2024)

Four serotypes of Cryptococcus are responsible for most human and animal infections. C. gattii , serotype B and C, are the primary the causative agent of cryptococcosis in immune competent individuals whilst, C. neoformans var. neoformans serotype D, and C. neoformans var. grubii serotype A are most prevalent in immunocompromised hosts world-wide. C. gattii is recognized as a species distinct from C. neoformans based on differences in clinical manifestations, morphology, biological characteristics, and environmental niche. We used the plant model Arabidopsis thaliana plants and plant derived substrates as a model to explore C. gattii interactions in its ecological niche. C. …