Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller Jan 2020

Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller

Legacy Theses & Dissertations (2009 - 2024)

Translation is a crucial mechanism for generating proteins to carry out cellular processes and for ensuring proper cell functions. Ribosomes are at the center of translation and are complex pieces of machinery. They consist of at least 80 core eukaryotic ribosomal proteins, which are conserved from prokaryotes, and four ribosomal RNAs (rRNAs): 18S, 28S, 5,8A 5S. In addition, numerous translation factors aid the ribosome in protein production. While ribosomes are typically described by these core features, they are known to exist in a heterogenous pool with variations in protein composition, modifications of rRNA, and an assortment of non-ribosomal proteins that …


Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte Jan 2019

Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte

Legacy Theses & Dissertations (2009 - 2024)

Transcription termination factor Rho is an essential protein in Escherichia coli and related bacteria. The primary function of Rho is to clear unproductive RNA polymerases from the DNA template to minimize negative effects associated with uncontrolled transcription. Although most of the Rho termination events are constitutive, premature Rho-mediated termination was observed at 3% of all affected transcripts indicating active regulation of Rho activity. In this work, we investigated the regulatory mechanism behind premature Rho-dependent transcription termination in two unrelated genes: suhB and topAI. We show that in both cases transcription is terminated inside the coding gene as a consequence of …


Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy Jan 2019

Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy

Legacy Theses & Dissertations (2009 - 2024)

DksA is a bacterial gene regulator that functions synergistically with the stress alarmone ppGpp to mediate the stringent response. DksA also functions independently of ppGpp to regulate transcription of a number of genes. DksA function is dependent on its binding affinity to RNA polymerase and requires specific interactions between RNAP and catalytic amino acids located on the coiled coil tip, D74 and A76. While much of the previous work on DksA has focused on understanding the mechanisms of action and the numerous gene targets for transcriptional regulation, little is known about the mechanisms by which DksA expression and function may …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …


The Characterization Of The Transcription Factor Msab And Its Role In Staphylococcal Virulence, Justin Batte May 2018

The Characterization Of The Transcription Factor Msab And Its Role In Staphylococcal Virulence, Justin Batte

Dissertations

Staphylococcus aureus is a common human pathogen that is responsible for a wide range of infections, ranging from relative minor skin infections to life-threatening disease such as bacteremia, septicemia, and endocarditis. S. aureus possesses many different virulent factors that aid in its ability to cause this wide array of infections. One major virulence factor includes the production of capsular polysaccharide (CP). The production of CP plays a major role in the virulence response during infection specifically by providing S. aureus an antiphagocytic mechanism that allows the pathogen to evade phagocytosis during an infection. S. aureus has developed complex genetic regulatory …


The Rtfa Gene Regulates Plant And Animal Pathogenesis And Secondary Metabolism In Aspergillus Flavus, Jessica Michelle Lohmar Jan 2018

The Rtfa Gene Regulates Plant And Animal Pathogenesis And Secondary Metabolism In Aspergillus Flavus, Jessica Michelle Lohmar

Graduate Research Theses & Dissertations

Aspergillus flavus is an opportunistic fungal plant and human pathogen and producer of mycotoxins including aflatoxin B1 (AFB1). As part of our ongoing studies to elucidate biological functions of the A. flavus rtfA gene, we examined its role in pathogenicity of both plant and animal model systems. rtfA encodes a putative RNA-Pol II transcription elongation factor, previously characterized in Saccharomycese cerevisiae, Aspergillus nidulans, Aspergillus fumigatus, where it was shown to regulate several important cellular processes, including morphogenesis, secondary metabolism. In addition, an initial study in A. flavus indicated that rtfA also influences development and production of AFB1, however its effect …


Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan Jan 2017

Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan

Legacy Theses & Dissertations (2009 - 2024)

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans, is an intracellular pathogen that infects millions of people every year. Mtb can survive inside the host for extended periods of time by sensing and adapting to the host environmental stressors. Transcriptional gene regulation plays a critical role in this adaptation. This dissertation focuses on understanding the structural and functional aspects of one such transcriptional regulatory unit, Cmr (Rv1675c), in Mtb.