Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Molecular Biology

Potential Regulation Of Breast Cancer Invasion By Thymidine Kinase 1, Eliza E. Bitter, Rachel M. Morris, Toni O. Mortimer, Kai Barlow, Abigail Schekall, Michelle H. Townsend, Jonathan Skidmore, Brett E. Pickett, Kim L. O'Neill Mar 2022

Potential Regulation Of Breast Cancer Invasion By Thymidine Kinase 1, Eliza E. Bitter, Rachel M. Morris, Toni O. Mortimer, Kai Barlow, Abigail Schekall, Michelle H. Townsend, Jonathan Skidmore, Brett E. Pickett, Kim L. O'Neill

Library/Life Sciences Undergraduate Poster Competition 2022

Breast cancer is the most common cancer in women and is largely treatable within the early stages of the disease. However, patient mortality drastically declines as the tumor begins to invade other tissues and metastasize, making aggressive phenotypes especially problematic to treat. Such treatment typically requires an aggressive and decisive multidisciplinary approach. The recent expansion of immunotherapy as a viable treatment option has greatly improved treatment outcomes, especially with aggressive breast cancer phenotypes. Thymidine kinase 1 (TK1) is a DNA salvage pathway enzyme that is highly expressed during S phase and involved in cell cycle repair. Past studies indicated that …


Retrotransposon-Mediated Transduction Of An Environmental Cue To Regulate Centrosome Fate, Shawn Patrick Murphy Jan 2021

Retrotransposon-Mediated Transduction Of An Environmental Cue To Regulate Centrosome Fate, Shawn Patrick Murphy

Legacy Theses & Dissertations (2009 - 2024)

In 1969, the enrichment of mobile element repeat sequences led Britton and Davidson to propose the hypothesis that gene expression in higher eukaryotes is regulated through the exaptation of mobile elements. In this work, I have explored the hypothesis that mobile elements can also be harnessed by the host to regulate asymmetric cell division, thereby determining cell fate. Retrotransposons are ubiquitous eukaryotic mobile elements that transpose through an RNA intermediate. They are often active in cell types that divide asymmetrically to yield daughter cells with different fates, such as embryonic stem cells, germline stem cells, neuronal stem cells and the …


Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau Jul 2016

Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau

Doctoral Dissertations

Intracellular protein destruction is a carefully coordinated and timed regulatory mechanism that cells utilize to modulate growth, adaptation to environmental cues, and survival. In Caulobacter crescentus, a bacterium known for studies of bacterial cell division cycle, the response regulator CpdR couples phosphorylation events with the AAA+ protease ClpXP to provide punctuated degradation of crucial substrates involved in cell cycle regulation. CpdR functions like an adaptor to alter substrate choice by ClpXP, however it remains unclear how CpdR influences its multiple targets. In this thesis, we show that, unlike canonical ClpXP adaptors, CpdR alone does not strongly bind its substrate. …


Transcriptional Regulation Of Sinorhizobium Meliloti Cell Cycle-Related Genes In The Δcbra Mutant And Root Nodules Of Medicago Sativa, Corey S. Hazekamp Aug 2014

Transcriptional Regulation Of Sinorhizobium Meliloti Cell Cycle-Related Genes In The Δcbra Mutant And Root Nodules Of Medicago Sativa, Corey S. Hazekamp

Graduate Masters Theses

Sinorhizobium meliloti is a Gram-negative alphaproteobacterium and nitrogen-fixing symbiont, which undergoes a novel cell cycle modification during its' host-microbe interaction. I intend to monitor the transcriptional regulation of cell cycle-related genes during free-loving growth, in addition to monitoring their expression during symbiosis. Using genes known to be regulated by CtrA in C. crescentus or predicted to be regulated by CtrA in S. meliloti, I aim to show how certain cell cycle genes are regulated in S. meliloti. In C. crescentus, CtrA acts as a transcription factor that is active when phosphorylated and inactive when not phosphorylated. In …


Identification Of New Cell Size Control Genes In S. Cerevisiae, Huzefa Dungrawala, Hui Hua, Jill Wright, Lesley Abraham, Thivakorn Kasemsri, Anthony Mcdowell, Jessica Stilwell, Brandt L. Schneider Jan 2012

Identification Of New Cell Size Control Genes In S. Cerevisiae, Huzefa Dungrawala, Hui Hua, Jill Wright, Lesley Abraham, Thivakorn Kasemsri, Anthony Mcdowell, Jessica Stilwell, Brandt L. Schneider

Molecular Biosciences Faculty Publications

Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened …


Nanosecond Pulsed Electric Field Effects On Cell Cycle And Apoptosis, Emily H. Hall Apr 2006

Nanosecond Pulsed Electric Field Effects On Cell Cycle And Apoptosis, Emily H. Hall

Theses and Dissertations in Biomedical Sciences

Apoptosis, programmed cell death, is a highly regulated and complex pathway essential for embryonic development, immune-system function and maintenance of tissue homeostasis where cells induce their own cell death. Cells undergoing apoptosis exhibit a distinctive phenotype characterized by maintenance of membrane integrity, cell shrinkage, phosphatidylserine (PS) externalization at the plasma membrane, caspase protease activation, DNA fragmentation, release of cytochrome c from the mitochondrion, and membrane blebbing. An important regulatory protein in the apoptotic pathway is p53. The p53 protein functions to modulate the cell cycle by arresting cells in the G1 and G 2 phases to repair DNA damage, and/or …