Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

PDF

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 48

Full-Text Articles in Molecular Biology

The Shape Of U: Mapping Out Protective Elements In Mrna Escapees, Jacob Miles Dec 2020

The Shape Of U: Mapping Out Protective Elements In Mrna Escapees, Jacob Miles

Masters Theses

A crucial step of the viral life cycle of Kaposi’s Sarcoma Herpesvirus (KSHV) lytic infection is the triggering of a massive RNA decay event termed “Host Shutoff”. Host Shutoff is driven by the viral endonuclease SOX which leads to the destruction of over 70% of the total transcriptome. This process cripples cellular gene expression and allows for viral reprograming of the cell for the purpose of viral replication. Co-evolution has led to the host developing a multitude of antiviral defenses aimed at preserving certain cellular RNAs linked to antiviral responses. One such defense are RNA secondary structures located within the …


Examining The Function Of Protein Acyltransferase Via The Dhhc Domain Of The Paz5 Protein In The Organism Dictyostelium Discoideum, George M. Stuart-Ranchev Dec 2020

Examining The Function Of Protein Acyltransferase Via The Dhhc Domain Of The Paz5 Protein In The Organism Dictyostelium Discoideum, George M. Stuart-Ranchev

Electronic Theses and Dissertations

Protein S-palmitoylation plays a crucial role in many biological systems. S-palmitoylation involves the post-translational attachment of palmitate to a cysteine residue through a reversible thioester linkage. S-Palmitoylation is used to modify both integral and membrane proteins, many of which are involved in intracellular trafficking, membrane localization, and signal transduction pathways. Intracellular palmitoylation is mediated by a family of protein acyltransferases (PATs). PAT mutations are associated with neurological diseases and cancer progression. Proteins in the PAT family are defined by the presence of a 51-amino acid cysteine-rich domain (CRD), which contains a highly conserved aspartate-histidine-histidine-cysteine (DHHC) motif. The …


Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao Dec 2020

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao

Doctoral Dissertations

Tropical forests, relative to other terrestrial ecosystems, exchange the largest amount of carbon with the atmosphere and also constitute a significant carbon sink. However, nutrient limitation, particularly of phosphorus (P), could limit growth of tropical forests and their function with the global carbon cycle. Thus, understanding root mechanisms to acquire P is necessary to representing the P cycle and corresponding interactions with plant growth. A large portion of total soil P in tropical forests occurs in organic forms, only accessible through root and microbial production of phosphatase enzymes. These phosphatase enzymes mineralize organic P into orthophosphate, the form of P …


Drivers Of Rickettsial Pathogen Transmission And Spillover In Local Tick Populations In Southeastern Virginia, Alexandra Cumbie Dec 2020

Drivers Of Rickettsial Pathogen Transmission And Spillover In Local Tick Populations In Southeastern Virginia, Alexandra Cumbie

Biomedical Sciences Theses & Dissertations

Cases of spotted fever group rickettsiosis are becoming more prevalent in the United States. In Virginia, there are three human-biting ticks which are largely responsible for the spread of rickettsial pathogens and the increase in disease cases. These species include Dermacentor variabilis, Amblyomma americanum, and Amblyomma maculatum; all of which are vectors of rickettsial agents to vertebrate hosts. These species are sympatric as adults and have the potential to share large and small mammal hosts. Their interactions on and off host and their associated rickettsiae were the focus of this dissertation work. Amblyomma americanum is the vector …


Development Of A Thermosensitive Endonuclease To Act As A Plasmid Kill-Switch, Christopher D. Leichthammer Nov 2020

Development Of A Thermosensitive Endonuclease To Act As A Plasmid Kill-Switch, Christopher D. Leichthammer

Electronic Thesis and Dissertation Repository

Biocontainment is an integral part of biomedical research that aims to protect the environment and human health by containing hazardous or invasive organisms in the laboratory. Containment systems often rely on elaborate genetic circuits; however, cells may escape containment by developing mutations that render the genetic circuits inviable or resistant to killing mechanisms. The aim of this thesis was to create a site-specific nuclease for biocontainment of plasmids in the mammalian gastrointestinal tract. LAGLIDADG homing endonucleases would be good candidate nucleases for a biocontainment system as they are resistant to mutations in their coding sequence and their target sequence in …


Bacterial Mechanisms Of Toxicity And Resistance To Organoarsenicals, Luis D. Garbinski Nov 2020

Bacterial Mechanisms Of Toxicity And Resistance To Organoarsenicals, Luis D. Garbinski

FIU Electronic Theses and Dissertations

Arsenic is a toxic element prevalent in the environment since the origin of life on Earth. Bacteria evolved in an arsenic-rich environment, where they developed ways to both overcome arsenic toxicity and harness it to compete with other organisms. These mechanisms include chemical modifications (e.g. oxidation, methylation), degradation, and efflux. The goal of this dissertation is to better characterize these mechanisms, illuminating the arsenic biogeocycle and allowing us to harness organoarsenical toxicity for novel antibiotics. A goal of my research was to elucidate the antibiotic properties of MAs(III), which is synthesized by bacteria to thrive over other bacteria, by identifying …


Posttranslational Modification And Protein Disorder Regulate Protein-Protein Interactions And Dna Binding Specificity Of P53, Robin Levy Nov 2020

Posttranslational Modification And Protein Disorder Regulate Protein-Protein Interactions And Dna Binding Specificity Of P53, Robin Levy

USF Tampa Graduate Theses and Dissertations

p53 is an intrinsically disordered transcription factor that suppresses tumor development by arresting the cell cycle and promoting DNA repair. p53 deletions or mutations can lead to cancer due to the inability of cells to respond to stress. The protein levels and post-translational modification state of p53 changes in response to cellular stress like DNA damage. Previous studies have shown that p53 can undergo coupled folding and binding with the E3 ubiquitin ligase, Mdm2, and the histone deacetylase, p300. In normal cells, p53 is kept at a low level by Mdm2, which marks it with ubiquitin, targeting p53 for proteasome …


Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich Oct 2020

Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich

Electronic Thesis and Dissertation Repository

Stone fruits are a valuable crop grown worldwide, however pathogens such as viruses threaten fruit production by reducing tree health and fruit yield. In an orchard within the Niagara region of Ontario, symptoms typical of viral infection such as chlorosis and leaf deformation were seen on sweet cherry (Prunus avium L.) trees. Next generation sequencing was performed on symptomatic and asymptomatic leaves and four viruses were identified. On the tree displaying the most severe symptoms, Prune dwarf virus (PDV), was the only virus detected. A survey conducted during this work showed 42% of cherry trees on a single …


1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei Aug 2020

1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei

Dissertations

1,4-Dioxane (dioxane) has emerged with an escalating concern given its human carcinogenicity and widespread occurrence in groundwater. Bioremediation is promising as an effective and cost-efficient treatment alternative for in situ or ex situ cleanup of dioxane and co-existing pollutants in the field. Soluble di-iron monooxygenases (SDIMOs) are reputed for their essential roles in initiating the cleavage of dioxane and other pollutants. In this doctoral dissertation, molecular foundations for SDIMOs-mediated dioxane biodegradation are untangled to promote the development and implication of site-specific bioremediation and natural attenuation strategies. This dissertation focused on propanotrophic bacteria given their pivotal roles in dioxane metabolism and …


Engineering Natural Competence Into The Fast-Growing Cyanobacterium Synechococcus Elongatus Utex 2973, Kristen Elizabeth Wendt Aug 2020

Engineering Natural Competence Into The Fast-Growing Cyanobacterium Synechococcus Elongatus Utex 2973, Kristen Elizabeth Wendt

Arts & Sciences Electronic Theses and Dissertations

Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium discovered to date. Using water, carbon dioxide, and light alone, this organism can double in 1.5 hours under optimal conditions. The accelerated doubling exhibited by Synechococcus 2973 makes it a prime candidate to serve as a model photoautotrophic system. However, Synechococcus 2973 lacks one highly desirable feature: it cannot undergo natural transformation. This thesis seeks to engineer this capacity into this fast-growing system in order to create an organism that is both fast growing and naturally competent. Synechococcus 2973 is a unique platform because it is >99% genetically identical to another …


Glycan-Dependent Adherence And Skin Colonization Of Staphylococcus Epidermidis Mediated By The Surface Protein Aap., Paroma Roy Aug 2020

Glycan-Dependent Adherence And Skin Colonization Of Staphylococcus Epidermidis Mediated By The Surface Protein Aap., Paroma Roy

Theses & Dissertations

Skin-dwelling coagulase-negative staphylococci (CoNS), a group of bacteria that includes Staphylococcus epidermidis, has been implicated to promote skin immunity and antimicrobial defense and prohibit colonization of skin by pathogens like S. aureus. As a skin inhabitant, S. epidermidis lives in tight association with corneocytes, the cells that constitute the uppermost layer of the skin epidermis. Yet the molecular mechanism responsible for adhesion of S. epidermidis to corneocytes remains poorly understood. Our study indicated that Accumulation-associated protein (Aap), a cell-wall anchored, fibrillar adhesin mediates bacterial-host interaction, demonstrated by significantly higher corneocyte binding by Aap-positive 1457 mutants as compared to …


Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis Aug 2020

Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis

Doctoral Dissertations

Peptide identification is at the core of bottom-up proteomics measurements. However, even with state-of the-art mass spectrometric instrumentation, peptide level information is still lost or missing in these types of experiments. Reasons behind missing peptide identifications in bottom-up proteomics include variable peptide ionization efficiencies, ion suppression effects, as well as the occurrence of chimeric spectra that can lower the efficacy of database search strategies. Peptides derived from naturally abundant proteins in a biological system also have better chances of being identified in comparison to the ones produced from less abundant proteins, at least in regular discovery-based proteomics experiments. This dissertation …


Transcriptional Control Of Virulence Genes In The Bacterial Pathogen Shigella Flexneri, Joy Asami Mckenna Aug 2020

Transcriptional Control Of Virulence Genes In The Bacterial Pathogen Shigella Flexneri, Joy Asami Mckenna

UNLV Theses, Dissertations, Professional Papers, and Capstones

Shigella species, the causal agents of bacillary dysentery, use a type III secretion system (T3SS) to inject two waves of virulence proteins, known as effectors, into the human colonic epithelium to subvert host cell machinery. Transcriptional regulation of these virulence genes is controlled by the three-tiered VirF/VirB/MxiE signaling cascade. Of these, VirB has the largest regulon (~50 genes); however, VirB regulatory properties are poorly understood. To date, VirB is known to function to counter or 'anti-silence' transcriptional silencing mediated by the histone-like nucleoid structuring protein H-NS. To better understand VirB regulation, my colleagues and I chose to better define the …


Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright Jul 2020

Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright

Biology ETDs

Microalgae are of interest for the creation of sustainable and cost competitive alternatives to petroleum-based fuels and chemicals. However, cultivation, extraction and processing of algal biomass requires improved yields to achieve economic feasibility. The advancement of microalgal biotechnology and various genetic engineering techniques allow the improvement of microalgae biomass for this purpose. Here, the characterization of the overexpression of the native vacuolar H+ pumping pyrophosphate (AVP1) in Picochlorum soloecismus was examined. AVP1 overexpression causes biomass increase in relevant plant crops. When overexpressed in this microalga it increases carbon storage in the form of starch in a closed laboratory photobioreactor. However, …


Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin Jun 2020

Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin

Master's Theses

Matthew R. Borglin

This thesis demonstrates efficacy of Octenyl Succinic Anhydride (OSA), as a biofilm sanitizer. Biofilms allow bacteria to adhere to solid surfaces with the use of excreted polymeric compounds. For example, surfaces found in food production or processing facilities such as the interior of a raw milk holding tank, are some of the most susceptible to biofilm contamination. When present, biofilms can cause a variety of negative effects, which include; reduction of product shelf life, corrosion, and outbreaks of foodborne illnesses. The close association of biofilms with the majority of foodborne illness cases led the US Environmental Protection …


Analysis And Exploration Of Novel Antibiotic-Producing Streptomyces Spp. In Spokane County, Washington, Kyle S. Kramer, Jenifer B. Walke Ph.D May 2020

Analysis And Exploration Of Novel Antibiotic-Producing Streptomyces Spp. In Spokane County, Washington, Kyle S. Kramer, Jenifer B. Walke Ph.D

2020 Symposium Posters

According to the Centers for Disease Control and Prevention, a US citizen is infected by an antibiotic-resistant pathogen every 11 seconds, and every 15 minutes, a patient dies as a result of these infections. Due to the increasing incidence of antibiotic-resistant pathogenic microbes, the study and exploration of novel antibiotics from novel environments are imperative as infectious diseases are the second leading cause of death in the United States. The purpose of this research is to investigate and analyze antibiotic-producing soil microbes in Spokane County, WA, with hopes of discovering novel antibiotic-producing microbes, specifically Streptomyces species, and explore some of …


Mitochondrial Morphology, Oxidative Stress Resistance, And Pathogenesis In Cryptococcus Neoformans, Andrew Lee Chang May 2020

Mitochondrial Morphology, Oxidative Stress Resistance, And Pathogenesis In Cryptococcus Neoformans, Andrew Lee Chang

Arts & Sciences Electronic Theses and Dissertations

Cryptococcus neoformans is an important pathogen that annually kills 200,000 people worldwide. It survives in the environment as a yeast or spore and can also proliferate within host macrophages after being inhaled into the lungs. In conditions of immunocompromise, cryptococcal cells can escape from the lungs to the brain, where they cause a deadly meningoencephalitis that is both difficult and expensive to treat. Cryptococcal adaptation to the harsh lung environment is a critical first step in its pathogenesis, and consequently a compelling topic of study. This adaptation is mediated by a complex transcriptional program that integrates cellular responses to environmental …


Development Of An In Vitro Culture System For Cryptosporidium Parvum, Georgia Wilke May 2020

Development Of An In Vitro Culture System For Cryptosporidium Parvum, Georgia Wilke

Arts & Sciences Electronic Theses and Dissertations

Cryptosporidium is a genus of protozoan parasites that causes diarrheal disease in humans and other animals. There are two major species that cause disease in humans: C. parvum, which infects both humans and animals, and C. hominis, which primarily infects humans. A recent study investigating the etiologies of pediatric diarrheal illness in Africa and South Asia found that Cryptosporidium is the 2nd most prevalent cause of diarrhea in infants and may be a contributing factor to chronic malnutrition. This discovery has led to renewed interest in studying this parasite and a reexamination of the barriers to studying Cryptosporidium. The main …


Rapid Antibiotic Susceptibility Testing Platform For Direct Clinical Samples, Terrance Zhang May 2020

Rapid Antibiotic Susceptibility Testing Platform For Direct Clinical Samples, Terrance Zhang

Honors Scholar Theses

Infectious diseases and septicemia are two of the major causes of death in the U.S., necessitating rapid treatment of septic patients with proper, efficacious antibiotics. Unfortunately, the emergence and spread of multidrug-resistant bacteria are continuously being aggravated by an abuse in antibiotic prescription at a clinical and agricultural level. It is known that antibiotic resistance evolves through the sequential accumulation of multiple mutations in bacteria, which is accentuated by prolonged exposure of bacteria to ineffective antibiotics when implementing traditional septicemia treatment. The goal of this project is to develop a novel, easy-to-use AST platform for rapid antimicrobial susceptibility profiling to …


Understanding The Role Of Protein Kinases Kin1 And Kin2 In The Protein Folding Pathways In The Yeast Saccharomyces Cerevisiae, Chandrima Ghosh May 2020

Understanding The Role Of Protein Kinases Kin1 And Kin2 In The Protein Folding Pathways In The Yeast Saccharomyces Cerevisiae, Chandrima Ghosh

Theses and Dissertations

Eukaryotic protein kinases catalyze the transfer of the -phosphate of an ATP to a serine/threonine/tyrosine residue present in a protein substrate. The phosphorylation of proteins has profound effects on their activity and protein-protein interactions, thus regulating a plethora of cellular processes, including cell growth, differentiation and protein homeostasis (or proteostasis). Our lab is the first to demonstrate that protein kinases Kin1 and its paralog Kin2 in the budding yeast Saccharomyces cerevisiae, orthologs of human microtubule affinity-regulating kinase (MARK), contribute to protein-folding homeostasis inside the endoplasmic reticulum (ER), in addition to their canonical roles in cellular exocytosis. The main aim of …


Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent May 2020

Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent

Electronic Theses and Dissertations

The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host cell plasma membranes (PM), but the mechanisms that direct HA clustering are not well understood. Previous studies have observed HA associated with actin rich regions of the PM, but there are no known direct interactions between HA and actin. Phosphatidylinositol 4,5-biphosphate (PIP2) is a signaling lipid in the PM which can regulate the actin cytoskeleton, and actin comets initiated by PIP2 are known to be exploited by HA to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, …


A Tale Of Two Adaptors: The Role Of Two Adaptor Proteins In Pseudomonas Aeruginosa Chp Chemosensory System Signal Transduction And Implications For Chemosensory Array Formation, Zachary Hying May 2020

A Tale Of Two Adaptors: The Role Of Two Adaptor Proteins In Pseudomonas Aeruginosa Chp Chemosensory System Signal Transduction And Implications For Chemosensory Array Formation, Zachary Hying

Theses and Dissertations

Bacteria use chemosensory systems to coordinate environmental signals to direct chemotaxis and make lifestyle decisions such as surface attachment and biofilm formation. Chemosensory systems form extended arrays with pseudo-hexagonal symmetry that are essential for efficient signal transduction. These arrays consist of three essential components: Methyl-Accepting Chemotaxis proteins (MCPs), which receive signals, a histidine kinase to coordinate cell responses through phosphorylation of response regulators, and an adaptor protein to transduce conformational change and facilitate array formation. Pseudomonas aeruginosa uses four chemosensory systems to control flagellar-based motility, type IV pili-mediated twitching motility and acute virulence, and biofilm formation. The Chp chemosensory system …


A Putative Cystathionine Beta-Synthase Homolog Of Mycolicibacterium Smegmatis Is Involved In De Novo Cysteine Biosynthesis, Saroj Kumar Mahato May 2020

A Putative Cystathionine Beta-Synthase Homolog Of Mycolicibacterium Smegmatis Is Involved In De Novo Cysteine Biosynthesis, Saroj Kumar Mahato

Graduate Theses and Dissertations

Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM. However, in vivo data were lacking. The M. smegmatis genome encodes only a CysM homolog and lacks orthologs for CysK1 or CysK2. The gene that codes for CysM is a part of an …


A Novel Mode Of Action Of C-Reactive Protein In Protecting Against Streptococcus Pneumoniae Infection And Synergy With Antibiotics, Donald Ngwa May 2020

A Novel Mode Of Action Of C-Reactive Protein In Protecting Against Streptococcus Pneumoniae Infection And Synergy With Antibiotics, Donald Ngwa

Electronic Theses and Dissertations

C-reactive protein (CRP) is a part of the innate immune system, is synthesized in the liver, its blood level increases in inflammatory states, and it binds to Streptococcus pneumoniae. The conformation of CRP is altered under conditions mimicking an inflammatory milieu and this non-native CRP also binds to immobilized/aggregated/pathogenic proteins. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection. For protection, CRP must be injected into mice within two hours of administering pneumococci, thus, CRP is protective against early-stage infection but not against late-stage infection. It is unknown how CRP protects …


A Comparative Taxonomic And Diversity Study Of Litter-Associated Fungi In Northwest Arkansas Forests, Rajaa Abdulrazzaq Abbas Al Aanbagi May 2020

A Comparative Taxonomic And Diversity Study Of Litter-Associated Fungi In Northwest Arkansas Forests, Rajaa Abdulrazzaq Abbas Al Aanbagi

Graduate Theses and Dissertations

Fungi are taxonomically the most species-rich group of organisms on the earth, ecologically occupy distinctive niches and interact with diverse other organisms throughout their biogeographic distributions and functionally play key roles through their various lifestyles. Plant litter, in particular, is a keystone component in ecosystems and provides heterogeneous microhabitats for the often overlooked litter-decomposing fungi and other organisms on the floor of temperate deciduous forests. Litter fungi involve indirect interactions with the plant, soil and whole food web network. However, the community structure and functions of litter-associated fungi as well as patterns of species richness distributed across various litter microhabitats …


A Review Of Human Immunodeficiency Virus, Sophie Silver May 2020

A Review Of Human Immunodeficiency Virus, Sophie Silver

Senior Honors Theses

Human immunodeficiency virus, also referred to as HIV, is a devastating virus which has infected millions. Characterized as a retrovirus, HIV has an RNA genome, which is reverse transcribed into DNA upon entry into the host cell. HIV primarily affects CD4+ T cells and is diagnosed by the significant reduction of CD4+ T cells. While no cure has been discovered yet, antiretroviral therapy (ART) has been demonstrated as an effective treatment option. In the progression of HIV, additional HIV-associated diseases may arise, including HIV-associated psoriasis and sensory neuropathy. In addition to the use of ART, clinicians often prescribe …


Surface Runoff Alters Cave Microbial Community Structure And Function, Madison Davis, Maria A. Messina, Giuseppe Nicolosi, Salvatore Petralia, Melvin D. Baker, Christiana K. S. Mayne, Chelsea M. Dinon, Christina J. Moss, Bogdan P. Onac, James R. Garey May 2020

Surface Runoff Alters Cave Microbial Community Structure And Function, Madison Davis, Maria A. Messina, Giuseppe Nicolosi, Salvatore Petralia, Melvin D. Baker, Christiana K. S. Mayne, Chelsea M. Dinon, Christina J. Moss, Bogdan P. Onac, James R. Garey

Molecular Biosciences Faculty Publications

Caves formed by sulfuric acid dissolution have been identified worldwide. These caves can host diverse microbial communities that are responsible for speleogenesis and speleothem formation. It is not well understood how microbial communities change in response to surface water entering caves. Illumina 16S rRNA sequencing and bioinformatic tools were used to determine the impact of surface water on the microbial community diversity and function within a spring pool found deep in the Monte Conca Cave system in Sicily, Italy. Sulfur oxidizers comprised more than 90% of the microbial community during the dry season and were replaced by potential anthropogenic contaminants …


Functional Sites Within The Ihnv Nonvirion Protein That Regulate Host Cellular Responses, Jeff Ringiesn, Bartolomeo Gorgoglione, Douglas W. Leaman Apr 2020

Functional Sites Within The Ihnv Nonvirion Protein That Regulate Host Cellular Responses, Jeff Ringiesn, Bartolomeo Gorgoglione, Douglas W. Leaman

Symposium of Student Research, Scholarship, and Creative Activities Materials

Fish Rhabdoviruses are responsible for causing fatal epizootics within commercial and wild populations of various fish species around the world. Infectious hematopoietic necrosis virus (IHNV), also known as the Salmonid novirhabdovirus, is enzootic along the Pacific Coast of North America and is comprised of five genogroups, each of which is endemic to a specific geographical location. Once the virus enters the host through the fin epithelia, IHNV infection causes infectious hematopoietic necrosis in salmonid species. The disease is highly fatal and presents with signs such as abdominal distension, bulging of the eyes, anemia, and necrosis of vital organs such as …


Genome Sequencing Analysis Of Laboratory Isolate Of Francisella Noatunensis Subs. Orientalis, Joseph Paquette Apr 2020

Genome Sequencing Analysis Of Laboratory Isolate Of Francisella Noatunensis Subs. Orientalis, Joseph Paquette

Senior Honors Projects

Francisella noatunensis subs. orientalis is a known fish pathogen that has been most notably isolated from tilapia (Oreochromis niloticus) in Costa Rica. The genome of this Francisella species pathogen has been sequenced using Next-Generation Sequencing and been made available for the scientific community. Dr. Kathryn Ramsey’s research laboratory in the Department of Cell and Molecular Biology at the University of Rhode Island works with several Francisella species pathogens and is interested in identifying the differences, if any, between the known genome sequence of Francisella noatunensis and that of a laboratory isolate of the same species. With the use …


Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling Apr 2020

Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling

School of Biological Sciences: Dissertations, Theses, and Student Research

Betaine lipids are a class of membrane lipids with betaine head groups. Three betaine lipids are known - diacylglyceryltrimethylhomoserine (DGTS), diacylglycerylhydroxymethylalanine (DGTA), and diacylglycerylcarboxymethylcholine (DGCC). Betaine lipids are most common in algae, although DGTS, the most common betaine lipid, is also found in many bacteria and fungi. Organisms which produce betaine lipids (especially DGTS) often don’t produce phosphatidylcholine (PtdCho), and DGTS structure resembles PtdCho structure without any phosphorous, leading to the hypothesis that betaine lipids may substitute for phospholipids in some organisms. This has been confirmed by discoveries that some organisms are capable of switching their membrane composition from PtdCho …