Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Molecular Biology

Trna Anticodon Cleavage By Target-Activated Crispr-Cas13a Effector, Ishita Jain, Matvey Kolesnik, Konstantin Kuznedelov, Leonid Minakhin, Natalia Morozova, Anna Shiriaeva, Alexandr Kirillov, Sofia Medvedeva, Alexei Livenskyi, Laura Kazieva, Kira S Makarova, Eugene V Koonin, Sergei Borukhov, Konstantin Severinov, Ekaterina Semenova Apr 2024

Trna Anticodon Cleavage By Target-Activated Crispr-Cas13a Effector, Ishita Jain, Matvey Kolesnik, Konstantin Kuznedelov, Leonid Minakhin, Natalia Morozova, Anna Shiriaeva, Alexandr Kirillov, Sofia Medvedeva, Alexei Livenskyi, Laura Kazieva, Kira S Makarova, Eugene V Koonin, Sergei Borukhov, Konstantin Severinov, Ekaterina Semenova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA–guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus …


Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao May 2023

Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao

Graduate School of Biomedical Sciences Theses and Dissertations

Dysregulated hyperinflammatory host immune response to underlying bacterial infections is a characteristic of sepsis. In sepsis, bacteria often trigger abnormal hyperinflammatory responses which can cause multiple organ failure and if sustained can lead to an immunosuppressive phase where the host is susceptible to secondary infections caused by opportunistic bacteria like Pseudomonas aeruginosa (P. aeruginosa). In our studies, we used a 2-hit model of cecal ligation and puncture (CLP) followed by P. aeruginosa secondary lung infection to investigate cellular and molecular mechanisms in the beneficial action of resolvin D2 (RvD2). Resolvins of the D-series are a group of fatty acids known …


The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton Apr 2023

The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton

Graduate School of Biomedical Sciences Theses and Dissertations

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen known as a major cause of hospital-acquired secondary infections, commonly causing chronic respiratory infections in immunocompromised individuals, especially those with cystic fibrosis, and often found in wound infections. P. aeruginosa uses the quorum sensing pathway to readily form protective biofilms, which reduce the efficacy of antibiotics and access by host immune cells to eradicate the pathogen. Specialized pro-resolving mediators (SPMs) are lipids endogenously produced by the host immune response to infection to aid in infection resolution. One SPM, Lipoxin A4 (LxA4), has been shown to be a robust quorum sensing inhibitor.

The …


Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson Apr 2023

Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson

Graduate School of Biomedical Sciences Theses and Dissertations

Probiotics are nonpathogenic microorganisms that have been extensively studied for their ability to prevent various infectious, gastrointestinal, and autoimmune diseases. The mechanisms underlying these probiotic effects have not been elucidated. However, we and other researchers have evidence suggesting that probiotic bacteria secrete metabolites that are antimicrobial and anti-inflammatory. As such, we developed a methodology to collect the secreted metabolites from a probiotic bacterium, Lactobacillus acidophilus, and tested this cell free filtrate (CFF) both in vitro and in vivo. Using this CFF, we have demonstrated that L. acidophilus secretes a molecule(s) that has specific bactericidal activity against the opportunistic pathogen, Pseudomonas …


A Conserved Mechanism For Hormesis In Molecular Systems, Sharon N. Greenwood, Regina G. Belz, Brian P. Weiser Jul 2022

A Conserved Mechanism For Hormesis In Molecular Systems, Sharon N. Greenwood, Regina G. Belz, Brian P. Weiser

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Hormesis refers to dose-response phenomena where low dose treatments elicit a response that is opposite the response observed at higher doses. Hormetic dose-response relationships have been observed throughout all of biology, but the underlying determinants of many reported hormetic dose-responses have not been identified. In this report, we describe a conserved mechanism for hormesis on the molecular level where low dose treatments enhance a response that becomes reduced at higher doses. The hormetic mechanism relies on the ability of protein homo-multimers to simultaneously interact with a substrate and a competitor on different subunits at low doses of competitor. In this …


A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling Jul 2019

A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling

Graduate School of Biomedical Sciences Theses and Dissertations

The innate immune system includes a menagerie of different cell types, each with a different role in the process of monitoring the body for invaders and presenting gathered debris (antigen) to the adaptive immune system. Somatic cells have intracellular receptors for the same purpose. Cancer cells, however, have avoided these methods of detection despite, in many cases, the tumor’s immunogenic traits. Immuno-oncology is a field dedicated to the immunological traits of tumors, more recently finding ways of instigating an immune response against tumors. In this regard, STING, a receptor of cyclic dinucleotides (CDN), has come to the forefront of immuno-oncology. …


Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper Jun 2018

Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich Dec 2017

Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells take cues from their environment and interpret them to enact a response. External stresses can produce a decision between adjusting to behaviors which promote surviving the stress, or enacting a cell death program. The decision to undergo programmed cell death (PCD) is controlled by a complex interaction between nuclear and mitochondrial signals. The mitochondria are highly dynamic organelles that constantly undergo fission and fusion. However, a dramatic shift in mitochondrial morphology toward fission occurs early in the PCD process. We have identified the transcription factor cyclin C as the biochemical trigger for stress‐induced mitochondrial hyper‐fragmentation in yeast (Cooper …


The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper Dec 2017

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to stress, the yeast1 and mammalian2 cyclin C translocate from the nucleus to the cytoplasm, where it associates with the GTPase Drp1/Dnm1 to drive mitochondrial fragmentation and apoptosis. Therefore, the decision to release cyclin C represents a key life or death decision. In unstressed cells, the cyclin C‐Cdk8 kinase regulates transcription by associating with the Mediator of RNA polymerase II. We previously reported that the Mediator component Med13 anchors cyclin C in the nucleus3. Loss of Med13 function leads to constitutive cytoplasmic localization of cyclin C, resulting in fragmented mitochondria, hypersensitivity to stress and …


Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz Aug 2017

Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz

Graduate School of Biomedical Sciences Theses and Dissertations

Human papillomaviruses are a vast family of double-stranded DNA viruses containing non-carcinogenic and carcinogenic types, whose crucial differences remain unknown, except for the difference in the frequency of DNA replication. The human papillomavirus (HPV) E2 protein regulates the initiation of viral DNA replication and transcription. Its recognition and binding to four 12 bp palindromic sequences in the viral origin is essential for its function. Little is known about the DNA binding mechanism of the E2 protein found in HPV types that have low risk for oncogenicity (low-risk) as well as the roles of various elements of the individual binding sites. …


Utility And Origin Of Blood-Based Autoantibodies For Early Detection And Diagnosis Of Neurodegenerative Diseases, Cassandra Demarshall Jan 2016

Utility And Origin Of Blood-Based Autoantibodies For Early Detection And Diagnosis Of Neurodegenerative Diseases, Cassandra Demarshall

Graduate School of Biomedical Sciences Theses and Dissertations

Autoantibodies are self-reactive antibodies that have been widely implicated as causal agents of autoimmune diseases. They are found in the blood of all human sera, regardless of age, gender, or the presence or absence of disease. While the underlying reason for their ubiquity remains unknown, it has been hypothesized that they participate in the clearance of blood-borne cell and tissue debris generated in both healthy and diseased individuals on a daily basis. Although much evidence supports this debris clearance role, recent studies also suggest a causal role for autoantibodies in disease. My thesis work has focused on this "cause and/or …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


The Effects Of Lipoxin A4 (Lxa4) On Neutrophil Biology In Sepsis, Benedict Wu Jan 2014

The Effects Of Lipoxin A4 (Lxa4) On Neutrophil Biology In Sepsis, Benedict Wu

Graduate School of Biomedical Sciences Theses and Dissertations

During sepsis, neutrophils are inappropriately activated and have prolonged lifespans, thus becoming dysfunctional. Excessive neutrophil activation can lead to tissue injury while neutrophil dysfunction can lead to decreased free radical production and reduced phagocytosis, preventing the host from clearing preexisting infections. Lipoxin A4 (LXA4) is a specialized pro-resolution mediator which reduces neutrophil migration and expression of proinflammatory mediators. Intact neutrophil functions are critical for the host to efficiently clear invading pathogens. The effects of LXA4 on neutrophil function in sepsis have not been established. Using the cecal ligation and puncture (CLP) model of sepsis, LXA4 administered 1 h after sepsis …