Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou Dec 2010

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one …


An Archaeal Trna-Synthetase Complex That Enhances Aminoacylation Under Extreme Conditions, Vlatka Godinic-Mikulcic, Jelena Jaric, Corinne D. Hausmann, Michael Ibba, Ivana Weygand-Durasevic Nov 2010

An Archaeal Trna-Synthetase Complex That Enhances Aminoacylation Under Extreme Conditions, Vlatka Godinic-Mikulcic, Jelena Jaric, Corinne D. Hausmann, Michael Ibba, Ivana Weygand-Durasevic

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (KD) of 250 nm. Formation of the MtSerRS·MtArgRS complex …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


Poxa, Yjek And Elongation Factor P Coordinately Modulate Virulence And Drug Resistance In Salmonella Enterica, William Wiley Navarre, Shicong Zou, Hervé Roy, Jinglin Lucy Xie, Alexei Savchenko, Alexander Singer, Elena Edvokimova, Lynne R. Prost, Runjun Kumar, Michael Ibba, Ferric C. Fang Jul 2010

Poxa, Yjek And Elongation Factor P Coordinately Modulate Virulence And Drug Resistance In Salmonella Enterica, William Wiley Navarre, Shicong Zou, Hervé Roy, Jinglin Lucy Xie, Alexei Savchenko, Alexander Singer, Elena Edvokimova, Lynne R. Prost, Runjun Kumar, Michael Ibba, Ferric C. Fang

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-β-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with …


Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana Jun 2010

Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that, in vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Protein Evolution Via Amino Acid And Codon Elimination, Lise Goltermann, Marie Sofie Yoo Larsen, Ranat Banerjee, Andreas C. Joerger, Michael Ibba, Thomas Bentin Apr 2010

Protein Evolution Via Amino Acid And Codon Elimination, Lise Goltermann, Marie Sofie Yoo Larsen, Ranat Banerjee, Andreas C. Joerger, Michael Ibba, Thomas Bentin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background
Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained via screening of reduced-size ensembles.

Methodology/Principal Findings
The strategy involves combining a sequential …


How The Sequence Of A Gene Can Tune Its Translation, Kurt Fredrick, Michael Ibba Apr 2010

How The Sequence Of A Gene Can Tune Its Translation, Kurt Fredrick, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Sixty-one codons specify 20 amino acids, offering cells many options for encoding a polypeptide sequence. Two new studies (Cannarrozzi et al., 2010, Tuller et al., 2010) now foster the idea that patterns of codon usage can control ribosome speed, fine-tuning translation to increase the efficiency of protein synthesis.


The Globin Gene Family Of The Cephalochordate Amphioxus: Implications For Chordate Globin Evolution, Bettina Ebner, Georgia Panopoulou, Serge N. Vinogradov, Laurent Kiger, Michael C. Marden, Thorsten Burmester, Thomas Hankeln Jan 2010

The Globin Gene Family Of The Cephalochordate Amphioxus: Implications For Chordate Globin Evolution, Bettina Ebner, Georgia Panopoulou, Serge N. Vinogradov, Laurent Kiger, Michael C. Marden, Thorsten Burmester, Thomas Hankeln

Wayne State University Associated BioMed Central Scholarship

Abstract

Background

The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire.

Results

We show that B. floridae harbors at least fifteen paralogous globin genes, …


Prospects And Pits On The Path Of Biomimetics: The Case Of Tooth Enamel, Vuk Uskoković Jan 2010

Prospects And Pits On The Path Of Biomimetics: The Case Of Tooth Enamel, Vuk Uskoković

Pharmacy Faculty Articles and Research

This review presents a discourse on challenges in understanding and imitating the process of amelogenesis in vitro on the molecular scale. In light of the analysis of imitation of the growth of dental enamel, it also impends on the prospects and potential drawbacks of the biomimetic approach in general. As the formation of enamel proceeds with the protein matrix guiding the crystal growth, while at the same time conducting its own degradation and removal, it is argued that three aspects of amelogenesis need to be induced in parallel: a) crystal growth; b) protein assembly; c) proteolytic degradation. A particular emphasis …