Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Molecular Biology

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer Dec 2019

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer

Dissertations & Theses (Open Access)

The lipid and protein composition of the plasma membrane (PM) must be tightly controlled to maintain cellular functionality, despite constant, rapid endocytosis. Because de novo synthesis of proteins and lipids is energetically costly, the cell depends on active recycling to return endocytosed membrane components back to the PM. For most proteins, the mechanisms and pathways of their PM retention remain unknown. The work presented here shows that association with ordered membrane microdomains is fully sufficient for PM recycling and that abrogation of raft partitioning leads to their degradation in lysosomes. These findings support a model wherein ordered membrane domains mediate …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin Aug 2019

Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin

Dissertations & Theses (Open Access)

Kainate receptors belong to the family of ion channels known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission, modulate the release of presynaptic glutamate, and facilitate dendrite formation. Kainate receptors are unique among the ionotropic glutamate receptors in being modulated by sodium ions. They have also been implicated in the development of higher learning and epilepsy. In recent years a wealth of structural data has become available for the AMPA and NMDA classes; however, the structural characterization of kainate receptors has been limited. The work in this dissertation utilizes luminescence resonance energy transfer …


Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang Aug 2019

Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang

Dissertations & Theses (Open Access)

Metazoans utilize a constellation of distal regulatory elements to control gene transcription, and therefore they have to forge highly complex chromatin loops to spatially bridge these regulatory elements and genes in the three-dimensional (3D) genome. However, the hierarchy of chromatin contacts and their underlying mechanisms are not well-understood. SMC complexes including Cohesin complex and Condensin complex has been widely proposed to organize 3D genome structure, and further regulate metazoans’ gene transcription. Here, we aim to dissect the direct functions of SMC complexes (both Cohesin and Condensin) in transcriptional regulation and 3D genome organization, by utilizing an inducible protein degradation system. …


Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer May 2019

Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer

Dissertations & Theses (Open Access)

In eukaryotic cells, protein homeostasis and cellular fitness is promoted by the transcription factor heat shock factor 1 (HSF1) during exposure to proteotoxic stress. HSF1 controls the basal and stress-induced expression of molecular chaperones and other protective targets. Dynamic regulation of HSF1 involves the major heat shock proteins Hsp70 and Hsp90. Recent advances in the understanding of this regulatory circuit in Saccharomyces cerevisiae have shown that the Hsp70 Ssa1 acts as a sensor for some proteotoxic stresses and is capable of a direct interaction with Hsf1. This work continues to explore the complex regulatory interaction between Hsf1 and Ssa1. I …


Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do May 2019

Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do

Dissertations & Theses (Open Access)

The misfolded prion protein causes and transmits disease in both humans and animals. As other infectious agents, prions display strain variation, which can generate different pathological outcomes in affected individuals. Unfortunately, there are no known therapies for these diseases, which at present are invariably fatal. In this work, the Protein Misfolding Cyclic Amplification technology (PMCA, an in vitro test that replicates minimum quantities of infectious prions) has been modified to screen for small molecules inhibiting prion protein misfolding in a strain-specific manner. In order to approach a high-throughput PMCA system, technical aspects in PMCA has been optimized for application of …