Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim Jan 2012

The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim

Biochemistry and Molecular Medicine Faculty Publications

Degradation of the extracellular matrix (ECM), a critical step in cancer metastasis, is determined by the balance between MMPs (matrix metalloproteinases) and their inhibitors TIMPs (tissue inhibitors of metalloproteinases). In cancer cells, this balance is shifted towards MMPs, promoting ECM degradation. Here, we show that EZH2 plays an active role in this process by repressing the expression of TIMP2 and TIMP3 in prostate cancer cells. The TIMP genes are derepressed by knockdown of EZH2 expression in human prostate cancer cells but repressed by overexpression of EZH2 in benign human prostate epithelial cells. EZH2 catalyzes H3K27 trimethylation and subsequent DNA methylation …