Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Predictive And Prognostic Biomarkers And Tumor Antigens For Targeted Therapy In Urothelial Carcinoma, Aditya Eturi, Amman Bhasin, Kevin Zarrabi, William Tester Apr 2024

Predictive And Prognostic Biomarkers And Tumor Antigens For Targeted Therapy In Urothelial Carcinoma, Aditya Eturi, Amman Bhasin, Kevin Zarrabi, William Tester

Department of Medical Oncology Faculty Papers

Urothelial carcinoma (UC) is the fourth most prevalent cancer amongst males worldwide. While patients with non-muscle-invasive disease have a favorable prognosis, 25% of UC patients present with locally advanced disease which is associated with a 10-15% 5-year survival rate and poor overall prognosis. Muscle-invasive bladder cancer (MIBC) is associated with about 50% 5 year survival when treated by radical cystectomy or trimodality therapy; stage IV disease is associated with 10-15% 5 year survival. Current therapeutic modalities for MIBC include neoadjuvant chemotherapy, surgery and/or chemoradiation, although patients with relapsed or refractory disease have a poor prognosis. However, the rapid success of …


Discovery Of A Small-Molecule Inhibitor That Traps Polθ On Dna And Synergizes With Parp Inhibitors, William Fried, Mrityunjay Tyagi, Leonid Minakhin, Gurushankar Chandramouly, Taylor Tredinnick, Mercy Ramanjulu, William Auerbacher, Marissa L Calbert, Timur Rusanov, Trung Hoang, Nikita Borisonnik, Robert Betsch, John Krais, Yifan Wang, Umeshkumar Vekariya, John Gordon, George Morton, Tatiana Kent, Tomasz Skorski, Neil Johnson, Wayne Childers, Xiaojiang Chen, Richard Pomerantz Apr 2024

Discovery Of A Small-Molecule Inhibitor That Traps Polθ On Dna And Synergizes With Parp Inhibitors, William Fried, Mrityunjay Tyagi, Leonid Minakhin, Gurushankar Chandramouly, Taylor Tredinnick, Mercy Ramanjulu, William Auerbacher, Marissa L Calbert, Timur Rusanov, Trung Hoang, Nikita Borisonnik, Robert Betsch, John Krais, Yifan Wang, Umeshkumar Vekariya, John Gordon, George Morton, Tatiana Kent, Tomasz Skorski, Neil Johnson, Wayne Childers, Xiaojiang Chen, Richard Pomerantz

Department of Biochemistry and Molecular Biology Faculty Papers

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in …


Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco Apr 2023

Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco

Student and Faculty Publications

mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had …


The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters Sep 2022

The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters

Faculty and Staff Publications

The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors …


Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


Is Whole-Exome Sequencing An Ethically Disruptive Technology? Perspectives Of Pediatric Oncologists And Parents Of Pediatric Patients With Solid Tumors., Laurence B Mccullough, Melody J Slashinski, Amy L Mcguire, Richard L Street, Christine M Eng, Richard A Gibbs, D William Parsons, Sharon E Plon Mar 2016

Is Whole-Exome Sequencing An Ethically Disruptive Technology? Perspectives Of Pediatric Oncologists And Parents Of Pediatric Patients With Solid Tumors., Laurence B Mccullough, Melody J Slashinski, Amy L Mcguire, Richard L Street, Christine M Eng, Richard A Gibbs, D William Parsons, Sharon E Plon

Faculty Publications

BACKGROUND: It has been anticipated that physician and parents will be ill prepared or unprepared for the clinical introduction of genome sequencing, making it ethically disruptive.

PROCEDURE: As a part of the Baylor Advancing Sequencing in Childhood Cancer Care study, we conducted semistructured interviews with 16 pediatric oncologists and 40 parents of pediatric patients with cancer prior to the return of sequencing results. We elicited expectations and attitudes concerning the impact of sequencing on clinical decision making, clinical utility, and treatment expectations from both groups. Using accepted methods of qualitative research to analyze interview transcripts, we completed a thematic analysis …


The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim Jan 2012

The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim

Biochemistry and Molecular Medicine Faculty Publications

Degradation of the extracellular matrix (ECM), a critical step in cancer metastasis, is determined by the balance between MMPs (matrix metalloproteinases) and their inhibitors TIMPs (tissue inhibitors of metalloproteinases). In cancer cells, this balance is shifted towards MMPs, promoting ECM degradation. Here, we show that EZH2 plays an active role in this process by repressing the expression of TIMP2 and TIMP3 in prostate cancer cells. The TIMP genes are derepressed by knockdown of EZH2 expression in human prostate cancer cells but repressed by overexpression of EZH2 in benign human prostate epithelial cells. EZH2 catalyzes H3K27 trimethylation and subsequent DNA methylation …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


Human Monocytes, Macrophages, And Dendritic Cells: Alcohol Treatment Methods, Gyongyi Szabo, Pranoti Mandrekar Apr 2010

Human Monocytes, Macrophages, And Dendritic Cells: Alcohol Treatment Methods, Gyongyi Szabo, Pranoti Mandrekar

Gyongyi Szabo

Both acute and chronic alcohol consumption have significant immunomodulatory effects of which alterations in innate immune functions contribute to impaired antimicrobial defense and inflammatory responses. Blood monocytes, macrophages, and dendritic cells play a central role in innate immune recognition as these cells recognize pathogens, respond with inflammatory cytokine production, and induce antigen-specific T-lymphocyte activation. All of these innate immune cell functions are affected in humans by alcohol intake. Here, we summarize the different effects of acute and chronic alcohol on monocyte, macrophage, and dendritic cell functions in humans and describe methods for separation and functional evaluation of these cell types.


Human Cerebral Neuropathology Of Type 2 Diabetes Mellitus, Peter T. Nelson, Charles D. Smith, Erin L. Abner, Frederick A. Schmitt, Stephen W. Scheff, Gregory J. Davis, Jeffrey N. Keller, Gregory A. Jicha, Daron Davis, Wang-Xia Wang, Adria Hartman, Douglas G. Katz, William R. Markesbery May 2009

Human Cerebral Neuropathology Of Type 2 Diabetes Mellitus, Peter T. Nelson, Charles D. Smith, Erin L. Abner, Frederick A. Schmitt, Stephen W. Scheff, Gregory J. Davis, Jeffrey N. Keller, Gregory A. Jicha, Daron Davis, Wang-Xia Wang, Adria Hartman, Douglas G. Katz, William R. Markesbery

Pathology and Laboratory Medicine Faculty Publications

The cerebral neuropathology of Type 2 diabetes (CNDM2) has not been positively defined. This review includes a description of CNDM2 research from before the ‘Pubmed Era’. Recent neuroimaging studies have focused on cerebrovascular and white matter pathology. These and prior studies about cerebrovascular histopathology in diabetes are reviewed. Evidence is also described for and against the link between CNDM2 and Alzheimer's disease pathogenesis. To study this matter directly, we evaluated data from University of Kentucky Alzheimer's Disease Center (UK ADC) patients recruited while non-demented and followed longitudinally. Of patients who had come to autopsy (N = 234), 139 met …