Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Dendritic Cell Development And Function, Vivek Durai May 2020

Dendritic Cell Development And Function, Vivek Durai

Arts & Sciences Electronic Theses and Dissertations

Dendritic cells (DCs) are a group of immune cells that include both classical dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). cDCs are further comprised of two distinct subsets, cDC1s and cDC2s, which play critical roles in the initiation of innate and adaptive immune responses. Understanding how these lineages develop and function is therefore paramount. All DCs require the receptor tyrosine kinase Flt3 and its ligand Flt3L for their development, but the loss of Flt3L in mice leads to a more severe DC deficiency than does the loss of Flt3. This has led to speculation that Flt3L can bind to …


The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller Jul 2019

The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller

Biological Sciences Theses & Dissertations

Foxp3+ regulatory T cells (TR) are an immunosuppressive subset of CD4+ T cells that maintain homeostasis of the immune system. They are sustained by the interaction between the Major Histocompatibility Complex (MHC) molecules present on antigen presenting dendritic cells and the T Cell Receptor (TCR) expressed on TR cells that is specific for the MHC loaded with an antigenic peptide. Here, we show that in addition to MHC/TCR interaction, Connexin-43 (Cx43) expression by dendritic cells is required to maintain the TR cell population. CD11c+ dendritic cells represent a major subset of antigen presenting cells. …


Gene Therapy Using Tet-Repressor System To Modulate Prostate Tumor Microenvironment, Nazita Yousefieh Jan 2008

Gene Therapy Using Tet-Repressor System To Modulate Prostate Tumor Microenvironment, Nazita Yousefieh

Theses and Dissertations in Biomedical Sciences

Prostate cancer is the most commonly diagnosed malignancy in men in the United States and is projected to be the third most frequent cause of male cancer-related deaths in 2007 after lung and skin cancers. The initial treatment for prostate cancer at early stages is prostatectomy or radiation, which usually is curative. However, approximately 20% of patients are not cured by such treatments and their cancer recurs, sometimes with long latencies. In other patients prostate cancer is diagnosed only after the cancer has metastasized and there are no effective therapies at this stage. Therefore immunotherapy seems to be a promising …