Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone Dec 2017

Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone

Graduate Theses and Dissertations

Foodborne illnesses are a leading cause of infectious diseases in the world. Among enteric organisms Salmonella is a key pathogen. It’s high prevalence in poultry and other food-animal sources make it imperative to study. Salmonella has the ability to modify its genetic content with help of mobile genetic elements such as plasmids. Incompatibiltiy group 1 (IncI1) plasmids are commonly reported in Salmonella. This study evaluates role on IncI1 plasmids in antimicrobial resistance and virulence in Salmonella. Genetic determinants of resistance and virulence are noted among our IncI1-containing Salmonella isolates. These genetic elements are also transferable and reported to carry respective …


Investigation Of The Substrate Recognition Characteristics And Kinetics Of Mammalian Mitochondrial Dna Topoisomerase I, Zeki Topcu Jul 1995

Investigation Of The Substrate Recognition Characteristics And Kinetics Of Mammalian Mitochondrial Dna Topoisomerase I, Zeki Topcu

Theses and Dissertations in Biomedical Sciences

Topoisomerases are DNA-modifying enzymes found in prokaryotes, eukaryotes, viruses and organelles such as chloroplast and mitochondria. Information about these enzymes in eukaryotic systems is mostly limited to nuclear enzymes, although our laboratory has been characterizing the biochemical and biophysical properties of the mammalian mitochondrial topoisomerases. We have determined the polarity of the attachment of mitochondrial topoisomerase I to its substrate DNA. To study the substrate preference and kinetic parameters of mitochondrial topoisomerase I, selected regions of mammalian mitochondrial DNA (mtDNA) were inserted into pGEM plasmid vectors following a series of modification and optimization experiments of currently available methods for PCR-cloning. …