Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Characterization Of Human Dutpase, Shawna Marie Rotoli Jul 2019

Characterization Of Human Dutpase, Shawna Marie Rotoli

Graduate School of Biomedical Sciences Theses and Dissertations

Deoxyuridine nucleotidyl transferase (dUTPase) is an enzyme found in all organisms that have thymine as a component of DNA. It catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate thus precluding the buildup of dUTP pools as well as providing the substrate, dUMP, for the de novo synthesis of thymidylate. In Homo sapiens, there are four isoforms: mitochondrial (mDut), nuclear (nDut), variant 3 and variant 4. This work is largely focused on nDut. Using structural and MS analyses of recombinant dUTPase constructs, an intermolecular disulfide bridge between cysteine-3 of each nDut monomer was discovered. It was found that these two …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …