Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …


Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton Oct 2014

Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton

Other Undergraduate Scholarship

Research has shown that changes in gene expression play a critical role in the development of Alzheimer’s Disease (AD). Our project will evaluate genome-wide RNA expression patterns from brain and blood in an AD mouse model. This analysis will provide insight regarding the mechanisms of AD pathology as well as determine a possible diagnostic tool utilizing RNA expression patterns found in the blood as biomarkers for AD.


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


The Mechanism Of Small Rna Biogenesis, Degradation, And Function In Arabidopsis, Meng Xie May 2014

The Mechanism Of Small Rna Biogenesis, Degradation, And Function In Arabidopsis, Meng Xie

School of Biological Sciences: Dissertations, Theses, and Student Research

Eukaryotic small RNAs play important roles in many biological processes through sequence-specific RNA silencing. In plants, there are mainly two small RNAs triggering gene silencing: microRNAs (miRNAs) and small interfering RNAs (siRNAs). The biogenesis and precise regulation of small RNA abundance are crucial for plant growth, development, genomic stability, and the resistance to both abiotic and biotic stresses. In this study, we used Arabidopsis thaliana, the model plant, to study the mechanism of RNA-directed DNA methylation (RdDM), in which siRNAs can trigger DNA methylation and gene silencing. In addition, we investigated the mechanism of miRNA biogenesis and degradation. For …


Clpxp Modulates Cell Growth And Morphology In Cell Shape Mutants Of E.Coli, Ryann Murphy May 2014

Clpxp Modulates Cell Growth And Morphology In Cell Shape Mutants Of E.Coli, Ryann Murphy

Senior Honors Projects

ClpXP modulates cell growth and morphology in cell shape mutants of E. coli

Ryann Murphy1 and Jodi L. Camberg1

1University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881

Penicillin Binding Proteins (PBPs) are a family of prokaryotic membrane proteins named for their propensity to bind the antibiotic penicillin and are involved in remodeling and deposition of peptidoglycan. In wild type Escherichia coli cells, the uniform rod shape is conserved across generations. E.coli cells containing multiple deletions of Low Molecular Weight (LMW) PBPs exhibit irregular shapes. LMW PBP5 (dacA) is a potential …


Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi Jan 2014

Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi

Biological Sciences Faculty Publications

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, …