Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike Aug 2021

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike

Department of Biochemistry: Dissertations, Theses, and Student Research

Plant oils are an important source of food, fuel, and feed in our society today. The oil found in the seeds of plants is composed almost entirely of triacylglycerol (TAG) molecules, which consist of three fatty acids esterified to a glycerol backbone. As crude oil supplies decline, vegetable oils are gaining traction as a renewable substitute to petroleum-based materials in fuels, lubricants, and specialty oleochemicals. However, as it currently stands vegetable oils do not possess the properties necessary to fill the void of a petroleum free world.

To address this problem, plant biotechnologists have done extensive work on genetic engineering …


Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson Mar 2018

Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson

Honors Theses

Copy number variations (CNVs) are large insertions, deletions, and duplications in the genome that vary between individuals in a species. These variations are known to impact a broad range of phenotypes from molecular-level traits to higher-order clinical phenotypes. CNVs have been linked to complex traits in humans such as autism, attention deficit hyperactivity disorder, nervous system disorders, and early-onset extreme obesity. In this study, whole-genome sequence was obtained from 72 founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC) in Clay Center, Nebraska. This included 24 boars (12 Duroc and 12 Landrace) and …


Molecular Analysis Confirming The Introduction Of Nile Crocodiles, Crocodylus Niloticus Laurenti 1768 (Crocodylidae), In Southern Florida, With An Assessment Of Potential For Establishment, Spread, And Impacts., Michael R. Rochford, Kenneth L. Krysko, Frank J. Mazzotti, Matthew W. Shirley, Mark W. Parry, Joseph A. Wasilewski, Jeffrey S. Beauchamp, Christpher R. Gillette, Edward F. Metzger Iii, Michiko A. Squires, Louis A. Somma Apr 2016

Molecular Analysis Confirming The Introduction Of Nile Crocodiles, Crocodylus Niloticus Laurenti 1768 (Crocodylidae), In Southern Florida, With An Assessment Of Potential For Establishment, Spread, And Impacts., Michael R. Rochford, Kenneth L. Krysko, Frank J. Mazzotti, Matthew W. Shirley, Mark W. Parry, Joseph A. Wasilewski, Jeffrey S. Beauchamp, Christpher R. Gillette, Edward F. Metzger Iii, Michiko A. Squires, Louis A. Somma

Papers in Herpetology

The state of Florida, USA, has more introduced herpetofauna than any other governmental region on Earth. Four species of nonnative crocodilians have been introduced to Florida (all since 1960), one of which is established. Between 2000–2014 we field-collected three nonnative crocodilians in Miami-Dade County, Florida, and one in Hendry County, Florida. We used DNA barcoding and molecular phylogenetics to determine species identification and native range origin. Also, we described diet, movement, and growth for one crocodile. Our molecular analyses illustrated that two of the crocodiles we collected are most closely related to Nile Crocodiles (Crocodylus niloticus) from South Africa, suggesting …


Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe Aug 2011

Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

The filamentous fungus, Magnaporthe oryzae, responsible for blast rice disease, destroys around 10-30% of the rice crop annually. Infection begins when the specialized infection structure, the appressorium, generates enormous internal turgor pressure through the accumulation of glycerol. This turgor acts on a penetration peg emerging at the base of the cell, causing it to breach the leaf surface allowing its infection.

The enzyme trehalose-6- phosphate synthase (Tps1) is a central regulator of the transition from appressorium development to infectious hyphal growth. In the first chapter we show that initiation of rice blast disease requires a regulatory mechanism involving an …