Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak Sep 2017

Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak

Pharmaceutical Sciences Faculty Publications

Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-L-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for …


Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer Jul 2017

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer

Celia A. Schiffer

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site …


Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud May 2017

Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud

Chancellor’s Honors Program Projects

No abstract provided.


Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski Apr 2017

Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski

Toxicology and Cancer Biology Faculty Publications

Ultraviolet light (UV) is an inducer of reactive oxygen species (ROS) as well as 6-4-photoproducts and cyclobutane pyrimidine dimers (CPD) in the skin, which further cause damage to the skin cells. Irradiation of cultured human melanocytes with UVB stimulated ROS production, which was reduced in cells treated with melatonin or its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT). Melatonin and its derivatives also stimulated the expression of NRF2 (nuclear factor erythroid 2 [NF-E2]-related factor 2) and its target enzymes and proteins that play an important role in cell protection from different damaging factors including UVB. Silencing …


Molecular Modeling Of Novel Tryptamine Analogs With Antibiotic Potential Through Their Inhibition Of Tryptophan Synthase, Jared Schattenkerk Jan 2017

Molecular Modeling Of Novel Tryptamine Analogs With Antibiotic Potential Through Their Inhibition Of Tryptophan Synthase, Jared Schattenkerk

CMC Senior Theses

The growing prevalence of antibiotic-resistant bacteria is a global health crisis that threatens the effectiveness of antibiotics in medical treatment. Increases in the number of antibiotic-resistant bacteria and a drop in the pharmaceutical development of novel antibiotics have combined to form a situation that is rapidly increasing the likelihood of a post-antibiotic era. The development of antibiotics with novel enzymatic targets is critical to stall this growing crisis. In silico methods of molecular modeling and drug design were utilized in the development of novel tryptamine analogs as potential antibiotics through their inhibition of the bacterial enzyme tryptophan synthase. Following the …