Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro May 2021

Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro

Symposium of Student Scholars

Creating a protein chimera to study regulation of muscle diversity.

Body muscles are made of many individual super-cells, called muscle fibers, that have distinct properties and determine every individual’s strength and endurance. Initially all muscle fibers have identical characteristics, but become differentiated into specific types in adults. The mechanism of such transition is not well understood, despite its obvious importance for shaping human physicality.

Remarkable conservation of the muscle tissue enables us to use fruit flies to study the mechanisms of muscle fiber diversity. We hypothesized that the transcription factor Mef2 acts as a molecular switch that activates structural genes …


Electrosensory Ampullary Organs Are Derived From Lateral Line Placodes In Bony Fishes, Melissa S. Modrell, William E. Benis, R. Glenn Northcutt, Marcus C. Davis, Clare V.H. Baker Oct 2011

Electrosensory Ampullary Organs Are Derived From Lateral Line Placodes In Bony Fishes, Melissa S. Modrell, William E. Benis, R. Glenn Northcutt, Marcus C. Davis, Clare V.H. Baker

Faculty and Research Publications

Electroreception is an ancient subdivision of the lateral line sensory system, found in all major vertebrate groups (though lost in frogs, amniotes and most ray-finned fishes). Electroreception is mediated by 'hair cells' in ampullary organs, distributed in fields flanking lines of mechanosensory hair cell-containing neuromasts that detect local water movement. Neuromasts, and afferent neurons for both neuromasts and ampullary organs, develop from lateral line placodes. Although ampullary organs in the axolotl (a representative of the lobe-finned clade of bony fishes) are lateral line placode-derived, non-placodal origins have been proposed for electroreceptors in other taxa. Here we show morphological and molecular …