Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Elucidating Collagen Degradation Synergy Between Col G And Col H From Hathewaya (Clostridium) Histolytica And Identifying Novel Structural Features In Hpt And Rec Domains From Vars Histidine Kinase In V. Alginolyticus, Perry Caviness Jul 2020

Elucidating Collagen Degradation Synergy Between Col G And Col H From Hathewaya (Clostridium) Histolytica And Identifying Novel Structural Features In Hpt And Rec Domains From Vars Histidine Kinase In V. Alginolyticus, Perry Caviness

Graduate Theses and Dissertations

In this research the mechanisms by which Hathewaya (Clostridia) histolytica collagenases are secreted and work together to degrade collagens are investigated. While H. histolytica collagenases Col G and Col H have similar multi-domain structures the difference in number of and orientation of the domains hint that the two target different regions in collagen. Study small angle x-ray scattering (SAXS) was used to give a low-resolution envelope of full-length Col G and Col H and Col G/Col H non-catalytic domains bound to a collagen-like peptide (mini-collagen). SAXS derived envelopes along with structural information was used to tease out the mechanisms by …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Characterization Of Biodistribution Of Transferrin And Receptor Binding Mechanism By Mass Spectrometry, Hanwei Zhao Mar 2020

Characterization Of Biodistribution Of Transferrin And Receptor Binding Mechanism By Mass Spectrometry, Hanwei Zhao

Doctoral Dissertations

Protein-based therapeutics have emerged as a key driver of rapid growth in drug development pipelines. However, developing such protein drugs is not straightforward in most cases, the existence of physiological barriers greatly restricts the efficient delivery of many therapeutic molecules, and therefore limits their clinical applications. A promising way to address this challenge takes advantage of certain transport protein which can effectively across and enhance the permeability of these barriers, such as transferrin (Tf) which can be internalized by malignant cells and cross physiological barriers via transferrin receptor (TfR)-mediated endocytosis and transcytosis. However, developing such products is impossible without successfully …


A Halogen Bonding Perspective On Iodothyronine Deiodinase Activity, Eric S. Marsan, Craig A. Bayse Mar 2020

A Halogen Bonding Perspective On Iodothyronine Deiodinase Activity, Eric S. Marsan, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively …


Assessment Of Soil Protein And Refractory Soil Organic Matter Across Two Chronosequences Of Newly Developing Marshes In Coastal Louisiana, Usa, Stuart Alexander Mcclellan Feb 2020

Assessment Of Soil Protein And Refractory Soil Organic Matter Across Two Chronosequences Of Newly Developing Marshes In Coastal Louisiana, Usa, Stuart Alexander Mcclellan

LSU Doctoral Dissertations

The impacts of sea-level rise and hydrologic manipulation are threatening the stability of coastal marshes throughout the world, thereby increasing the potential for re-mineralization of soil organic matter (SOM) in these systems. Such threats have prompted marsh restoration efforts, particularly in coastal Louisiana, yet it is unclear how the slowly decomposing (refractory) and quickly decomposing (labile) fractions of SOM may be differentially affected by different approaches to marsh restoration. Additionally, otherwise labile compounds may accumulate in the soil via a range of protective mechanisms, including rapid burial and association with organic compounds that are thought to enhance soil aggregation, such …


Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer Jan 2020

Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer

CMC Senior Theses

Defensive symbioses, in which microbes provide molecular defenses for an animal host, hold great potential as untapped sources of therapeutically useful antibiotics. Fungus-growing ants use antifungal defenses from bacterial symbionts to suppress pathogenic fungi in their nests. Preliminary chemical investigations of symbiotic bacteria from this large family of ants have uncovered novel antifungal molecules with therapeutic potential, such as dentigerumycin and selvamicin.

In this study, the bacterial symbionts of North American Trachymyrmex fungus-growing ants are investigated for antifungal molecules. Plate-based bioassays using ecologically-relevant fungal pathogens confirmed that these bacteria have antifungal activity. In order to purify and identify the antifungal …


Antibiotic Drug Nanocarriers For Probing Of Multidrug Abc Membrane Transporter Of Bacillus Subtilis, Pavan Kumar Cherukuri, Preeyaporn Songkiatisak, Feng Ding, Jeam-Michel Jault, Xiao-Hong Nancy Xu Jan 2020

Antibiotic Drug Nanocarriers For Probing Of Multidrug Abc Membrane Transporter Of Bacillus Subtilis, Pavan Kumar Cherukuri, Preeyaporn Songkiatisak, Feng Ding, Jeam-Michel Jault, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against Bacillus subtilis. We functionalized 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm silver nanoparticles (Ag NPs) with a monolayer of 11-amino-1-undecanethiol and covalently linked them with antibiotics (ofloxacin, Oflx). The labeling ratios of antibiotics with NPs are 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We designed …


Synthesis, Characterization, And Biological Activity Of Imidazolium Salts, David Weader Jan 2020

Synthesis, Characterization, And Biological Activity Of Imidazolium Salts, David Weader

Williams Honors College, Honors Research Projects

Nonmuscle invasive bladder cancer (NMIBC) inflicts thousands of Americans annually, and is typically treated with the immunotherapy BCG. However, due to a BCG shortage, there is a new need for novel treatments of NMIBC. Addressing this issue, several imidazolium salt derivatives were synthesized and characterized with the intent of treatment within the bladder. These imidazolium salts were tested against different human bladder cancer cell lines in vitro to determine their reactivity and cytotoxicity. Among these results are GI50 concentrations for each drug, which is the concentration of drug needed to see growth inhibition in 50% of treated cells. Previous published …