Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

A Conserved Mechanism For Hormesis In Molecular Systems, Sharon N. Greenwood, Regina G. Belz, Brian P. Weiser Jul 2022

A Conserved Mechanism For Hormesis In Molecular Systems, Sharon N. Greenwood, Regina G. Belz, Brian P. Weiser

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Hormesis refers to dose-response phenomena where low dose treatments elicit a response that is opposite the response observed at higher doses. Hormetic dose-response relationships have been observed throughout all of biology, but the underlying determinants of many reported hormetic dose-responses have not been identified. In this report, we describe a conserved mechanism for hormesis on the molecular level where low dose treatments enhance a response that becomes reduced at higher doses. The hormetic mechanism relies on the ability of protein homo-multimers to simultaneously interact with a substrate and a competitor on different subunits at low doses of competitor. In this …


Discovery Of First-In-Class Small Molecule Agonists Of The Rxfp2 Receptor As Therapeutic Candidates For Osteoporosis, Maria Esteban Lopez Jun 2022

Discovery Of First-In-Class Small Molecule Agonists Of The Rxfp2 Receptor As Therapeutic Candidates For Osteoporosis, Maria Esteban Lopez

FIU Electronic Theses and Dissertations

Osteoporosis is a chronic bone disease characterized by decreased bone mass and increased risk of developing fractures, predominantly observed in the elderly. The pathophysiological cause of the disease is a decrease in the activity of the bone-forming cells (osteoblasts) that alters bone remodeling in favor of bone resorption, leading to a decrease in bone mass. Recent studies identified the relaxin family peptide receptor 2 (RXFP2), the G protein-coupled receptor (GPCR) for insulin-like 3 peptide (INSL3), as an attractive target expressed in osteoblast cells to increase bone formation. The goal of this dissertation is to discover and characterize small molecule agonists …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker Jan 2022

Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize …