Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

West Virginia University

Retinitis pigmentosa

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest Jan 2021

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest

Graduate Theses, Dissertations, and Problem Reports

Photoreceptors are specialized neuroepithelial cells which are optimized for efficient capture of light and initiation of visual transduction. These cells have several compartments which are very important for proper visual function and segregation of cellular processes, including the outer segment (OS), inner segment (IS), nucleus, and synapse. The IS houses all of the cellular organelles and biosynthetic molecular machinery the cell requires and is the site of protein synthesis. The light-sensing OS is a highly modified, primary cilium, which contains many stacks of double membranous discs which house proteins required for formation and maintenance of OS structure, as well as …


Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan Jan 2020

Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan

Graduate Theses, Dissertations, and Problem Reports

Photoreceptor neurons are modified primary cilia with an extended ciliary compartment known as the outer segment (OS). The mechanisms behind the elaboration of photoreceptor cilia, OS morphogenesis, and maintenance remain poorly understood. In this work, we focused on dissecting the role of two ciliary proteins, the small GTPase ADP-ribosylation factor-like GTPase 13B (ARL13B) and Bardet-Biedl Syndrome-8 (BBS8) in the context of photoreceptor biology. Both BBS8 and ARL13B are linked to defects in ciliogenesis (cilia development) and Retinitis Pigmentosa (vision loss). ARL13B is implicated in regulating ciliary length, and BBS8 is part of the Bardet-Biedl Syndrome complex (BBSome); the BBSome is …