Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Molecular Biology

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker Jul 2023

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker

Department of Biochemistry and Molecular Biology Faculty Papers

Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 …


Migratory Material: Epigenetics & Weaving At The Us-Mexico Border, Valerie Navarrete May 2023

Migratory Material: Epigenetics & Weaving At The Us-Mexico Border, Valerie Navarrete

Masters Theses

Discourse often sutures the body shut, disallowing representations of identity to outgrow sociopolitical interests. This issue may originate from borders, but also from the unnamable pathology that generational colonial trauma transmits to the mind, body, and environment. Without a direct form of translatability, this thesis proposes a new materialism that deviates from any object-oriented ontology. Untethered and intra-active, epigenetics and weaving represent objects that transform typical ways of knowing and seeing. Their sensitivity to the environment, in addition to their mobility across generations of time, broaden the spatiotemporal loci of the body and its embodiment. Proposing new materials that expand …


Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van May 2022

Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van

Dissertations & Theses (Open Access)

Plant Homeodomain Finger Protein 20 (PHF20) and its homolog PHF20 Like 1 (PHF20L1) are known subunits of the Non-Specific Lethal (NSL) complex, which acetylates lysine residues on histone H4 and regulates gene expression. The current model assumes that PHF20 and PHF20L1 are present together in the NSL complex, although it has never been tested. Performing extensive biochemical analysis, we observed that PHF20 and PHF20L1 were exclusively and independently associated with the NSL complex. Our protein domain analysis showed that the C-termini of PHF20 and PHF20L1 are crucial for their interactions with the respective complexes. Furthermore, enrichment sites of PHF20 and …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss Apr 2018

Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss

USF Tampa Graduate Theses and Dissertations

Alcohol liver disease (ALD) is a major health concern throughout the world. Currently, in the United States, 17 million people suffer from alcoholism, of which 1.4 million people are receiving treatment [1, 2]. The link between ethanol metabolism, reactive oxygen species (ROS) and liver injury in ALD has been well characterized over the last couple decades [3-10]. Ethanol metabolism relies on the availability of the cofactor NAD+ for the oxidation of ethanol into acetate, consequently causing alterations in redox potential. Redox dysfunction within the mitochondria can affect multiple pathways important in maintaining cellular homeostasis. Chapter 1 provides an introduction to …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Epigenetic Regulation Of Gene Expression During Spermatogenesis, Karishma Nayak May 2016

Epigenetic Regulation Of Gene Expression During Spermatogenesis, Karishma Nayak

Senior Honors Projects

In the US livestock production industry, improving reproductive efficiency will improve animal welfare and maintain reasonable costs of meat and milk for consumers. In recent research, abnormalities in epigenetic markers in sperm during spermatogenesis, has been linked to male subfertility in many species. Epigenetics is the study of changes in organisms caused by modifications of gene expression, including DNA methylation, rather than alteration of the genetic code itself. When this process is disturbed, it can negatively impact semen therefore decreasing its fertility. Through further research on how DNA methylation influences gene expression during spermatogenesis and its impact on sperm quality, …


Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …


Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim Dec 2011

Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim

Dissertations & Theses (Open Access)

Friedreich’s ataxia (FRDA) is caused by the transcriptional silencing of the frataxin (FXN) gene. FRDA patients have expansion of GAA repeats in intron 1 of the FXN gene in both alleles. A number of studies demonstrated that specific histone deacetylase inhibitors (HDACi) affect either histone modifications at the FXN gene or FXN expression in FRDA cells, indicating that the hyperexpanded GAA repeat may facilitate heterochromatin formation. However, the correlation between chromatin structure and transcription at the FXN gene is currently limited due to a lack of more detailed analysis. Therefore, I analyzed the effects of the hyperexpanded GAA …


Mechanism Of Transcriptional Suppression Of A Phytochrome A Epiallele In Arabidopsis Thaliana, Gulab D. Rangani Aug 2011

Mechanism Of Transcriptional Suppression Of A Phytochrome A Epiallele In Arabidopsis Thaliana, Gulab D. Rangani

Graduate Theses and Dissertations

Cytosine methylation in DNA is an integral part of epigenetically controlled regulatory networks in eukaryotes. Both plants and vertebrates display DNA methylation in the gene coding region; however, its role in gene expression is not well understood. Gene promoter, on the other hand, remains largely unmethylated. Acquisition of methylation in promoter results in transcriptional suppression of the gene. The goal of this research is to study the effect of coding region methylation in gene expression using a unique gene model, phyA'. phyA' is a transcriptionally suppressed epiallele of the Arabidopsis thaliana Phytochrome A gene, which contains methylation in CG sites …