Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Functional Analysis Of Chromodomain Helicase Dna Binding Protein 2(Chd2) Mediated Genomic Stability, Sangeetha Rajagopalan May 2010

Functional Analysis Of Chromodomain Helicase Dna Binding Protein 2(Chd2) Mediated Genomic Stability, Sangeetha Rajagopalan

Doctoral Dissertations

Histone modifying enzymes and chromatin remodeling complexes play an important regulatory role in chromatin dynamics that dictate the interaction of regulatory factors involved in processes such as DNA replication, recombination, repair and transcription, with DNA template. The CHD (Chromodomain Helicase DNA Binding Protein) family of proteins is known to be involved in the regulation of gene expression, recombination and chromatin remodeling via their chromatin specific interactions and activities. Phenotypic analysis of the Chd2 mutant mouse model developed by our laboratory indicates that the Chd2 protein plays a critical role in tumor suppression as the heterozygous mutant mice develop spontaneous lymphomas. …


Regulatory And Functional Aspects Of Foxo3a Transcription Factor And Their Implications In Prostate Cancer, Melissa Elise Dobson Jan 2010

Regulatory And Functional Aspects Of Foxo3a Transcription Factor And Their Implications In Prostate Cancer, Melissa Elise Dobson

Wayne State University Dissertations

The P13K/Akt pathway is a critical mediator of growth factor signaling involving many cellular functions. The deregulation of this pathway has been shown to be involved in the development of various cancers. One of the main targets of this pathway is FoxO3a, a transcription factor whose target genes are involved in important cellular processes such as apoptosis, cell cycle control, and glucose metabolism. FoxO3a is regulated by various post translational modifications including acetylation, ubiquitination and phosphorylation. The transcription factor is directly phosphorylated by Akt on 3 residues: Threonine 32, Serine 253 and Serine 315. Phosphorylation by Akt generates binding sites …