Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell Biology

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 30 of 60

Full-Text Articles in Molecular Biology

Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger Dec 2019

Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger

Theses & Dissertations

Genomic instability is one of the enabling characteristics of cancer. DNA damage response pathways are important for genomic integrity and cell cycle progression. Defects in DNA damage repair can often lead to cell cycle arrest, cell death, or tumorigenesis. The activation of the DNA damage response includes tightly regulated signaling cascades that involve kinase phosphorylation and modular domains that scaffold phosphorylated motifs to coordinate recruitment of DNA repair proteins. Modular domains are conserved tertiary structures of a protein that can fold, function, and evolve independently from an intact protein. One of the most common modular domains involved in DNA damage …


Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng Dec 2019

Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng

Theses & Dissertations

Type 1 diabetes is one of the most challenging chronic autoimmune diseases. The destruction and dysfunction of insulin-secreting β cells are the results of inflammatory infiltration and the synergistic effect of multiple immune cells. The aim of this dissertation is to develop novel and reliable therapeutic approaches to advance the treatment of T1D: including chemical modification of a broad-spectrum immunosuppressant, co-application of small molecule based immune intervention and siRNA based β cell preservative therapy, and administration of a PI3K-δ/γ dual inhibitor to specifically target immune cells, utilizing synthetic polymeric micelles or natural produced multi-functional exosomes derived from human bone marrow …


Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng Dec 2019

Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng

Theses & Dissertations

Connexins are integral membrane proteins that oligomerize to form gap junction channels. Ions and small molecules diffuse intercellularly through these channels, allowing individual cellular events to synchronize into the functional response of an entire organ. Gap junction channels composed of Connexin43 (Cx43) mediate electrical coupling and impulse propagation in the normal working myocardium. In the failing heart, Cx43 remodeling (decreased expression, altered phosphorylation state, loss at intercalated discs, and increased presence at lateral membranes) contributes to rhythm disturbances and contractile dysfunction. While there is considerable information regarding key interactions of Cx43 in the regulation of gap junction channels, unfortunately, the …


Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz Dec 2019

Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz

Arts & Sciences Electronic Theses and Dissertations

The current standard of care treatment for locally advanced cervical cancer is curative intent pelvic radiation with concurrently administered platinum chemotherapy (CRT). This treatment strategy is effective for many patients, but 33-50% of patients treated with CRT develop disease recurrence. Metastatic and recurrent cervical cancer is an incurable condition, and many of the currently available treatments are associated with significant morbidity and mortality. Identifying these patients upfront is a challenge that clinicians face when developing treatment strategies. Previous studies used to catalog the genomic and transcriptomic landscape of cervical cancer lacked high quality corresponding clinical follow up data for patients, …


A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner Dec 2019

A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner

Arts & Sciences Electronic Theses and Dissertations

Telomeres are stretches of TTAGGG nucleotide repeats located at the ends of linear chromosomes that shorten with progressive cell division and prevent genomic instability at the cost of limiting a cell’s capacity to proliferate. This limitation can be overcome by telomerase, a ribonucleoprotein complex that elongates telomeres via reverse-transcription of the template telomerase RNA component (TERC). Recent studies have reported potential functions of TERC outside of its role in telomere maintenance. These noncanonical functions of TERC are however poorly defined, and the molecular mechanisms and biological relevance behind such functions remain elusive. Here, we generated conditional TERC knock-out human embryonic …


Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes Dec 2019

Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes

Graduate Theses and Dissertations

Natural environments are dynamic, and organisms must sense and respond to changing conditions. One common way organisms deal with stressful environments is through gene expression changes, allowing for stress acclimation and resistance. Variation in stress sensing and signaling can potentially play a large role in how individuals with different genetic backgrounds are more or less resilient to stress. However, the mechanisms underlying how gene expression variation affects organismal fitness is often obscure.

To understand connections between gene expression variation and stress defense phenotypes, we have been exploiting natural variation in Saccharomyces cerevisiae stress responses using a unique phenotype called acquired …


Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr Dec 2019

Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr

Graduate Theses and Dissertations

Protein targeting is a vital cellular function. The signal recognition particle (SRP) pathway is a universally conserved targeting system present in the cytosol and used to co-translationally target many proteins to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes. The chloroplast has a homologous SRP system which post-translationally targets light harvesting chlorophyll binding proteins (LHCPs) to the thylakoid membrane for integration. The chloroplast SRP (cpSRP) is a heterodimer with a 54 kDa subunit equivalent to SRP54 in the canonical pathway. In addition, cpSRP contains a novel 43 kDa subunit which is a unique and irreplaceable component. cpSRP43 …


The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer Dec 2019

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer

Dissertations & Theses (Open Access)

The lipid and protein composition of the plasma membrane (PM) must be tightly controlled to maintain cellular functionality, despite constant, rapid endocytosis. Because de novo synthesis of proteins and lipids is energetically costly, the cell depends on active recycling to return endocytosed membrane components back to the PM. For most proteins, the mechanisms and pathways of their PM retention remain unknown. The work presented here shows that association with ordered membrane microdomains is fully sufficient for PM recycling and that abrogation of raft partitioning leads to their degradation in lysosomes. These findings support a model wherein ordered membrane domains mediate …


The Democratization And Development Of Cell-Free Protein Synthesis, Max Z. Levine Nov 2019

The Democratization And Development Of Cell-Free Protein Synthesis, Max Z. Levine

Master's Theses

Cell-free protein synthesis (CFPS) using crude lysates has developed into a robust platform technology over the last 60 years to express numerous types of recombinant proteins. The open-nature, elimination of reliance on cell viability, and focus of all energy towards production of the protein of interest represent substantial advantages of CFPS over in vivo protein expression methods. CFPS has provided new opportunities across a series of research fields that include metabolic engineering, therapeutic and vaccine development, education, biosensors, and many more. In recent years, optimizations of CFPS have even allowed the platform to reach the industrial level of protein production. …


Regulation Of The Microtubule Cytoskeleton And Cell Wall Development In Arabidopsis Thaliana, Christy J. Fornero Oct 2019

Regulation Of The Microtubule Cytoskeleton And Cell Wall Development In Arabidopsis Thaliana, Christy J. Fornero

Theses and Dissertations

Regulation of the cortical microtubule cytoskeleton is critical for organized plant cell division. Arabidopsis ton1 and ton2 mutants display random cell division plane placement and lack the plant-specific cortical microtubule array that encircles the nucleus prior to mitosis. In wild type plants, this preprophase band (PPB) of cortical microtubules precisely marks the future division plane. The specific roles of TON1 and TON2 in PPB formation are not yet known. It is suspected that TON1 Recruiting Motif (TRM) proteins may be involved in TON1 and TON2 recruitment to the PPB. Here we describe results for the targeted disruption of a group …


Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago Sep 2019

Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago

Dissertations, Theses, and Capstone Projects

A variety of biological functions depend on actin organization. The organization of actin is tightly regulated by a plethora of extracellular and intracellular signaling, scaffolding, and actin-binding proteins. Dysfunctions in this regulation lead to immune diseases, increased susceptibility to pathogens, neurodegenerative diseases, developmental disorders, and cancer metastasis. A variety of actin-dependent processes, including cell motility, are regulated by several proteins of interest: Paxillin, a scaffolding protein; WASP, an actin nucleating protein; SCAR/WAVE, another WASP family actin nucleating protein; Talin, a cortex-to-membrane binding protein; Myosin II, an F-actin contracting motor protein; and Protein Kinase C, a protein kinase. D. discoideum cells …


Vanadium Compounds Modulate Osteoblast Proliferation And Function, Bryan Sosa Aug 2019

Vanadium Compounds Modulate Osteoblast Proliferation And Function, Bryan Sosa

Seton Hall University Dissertations and Theses (ETDs)

Osteoblastogenesis is an essential part of the bone healing process. Insulin has been shown to improve bone healing in both normal and diabetic bone healing models. In addition, insulin mimetic compounds such as Zinc chloride (ZnCl2) and Vanadyl acetylacetonate (VAC) have also been shown to improve bone healing in these models as well. The purpose of this study was to determine the effects of vanadium compounds VAC and Vanadium (II) sulfate (VSO4) in osteoblast proliferation and function. In addition the mechanisms by which growth and function are facilitated by these Vanadium compounds were also evaluated. In …


Sensory Primary Cilium Is A Distinct Signaling Compartment, Rinzhin Tshering Sherpa Aug 2019

Sensory Primary Cilium Is A Distinct Signaling Compartment, Rinzhin Tshering Sherpa

Pharmaceutical Sciences (PhD) Dissertations

The primary cilium is a solitary cellular organelle that protrudes from the apical cell membrane. Findings on cilia-dependent mechanosenstation have shown that the primary cilium acts as a transducer of fluid-shear stress into intracellular signaling. Over recent years, studies in primary cilia have intensified after determining a causal relationship between dysfunctional primary cilia and cystic diseases. Along with its mechanosensory function, the primary cilium houses a variety of receptors, ion channels and transporter proteins. Studies in cilia biology have shown that primary cilia are coordinators of signaling pathways such as Hedgehog (Hh), Wnt, and platelet-derived growth factor (PDGF) pathways during …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Lorelei Localization And Ovule Ultrastructure In Arabidopsis Thaliana, Juleen May Dickson Aug 2019

Lorelei Localization And Ovule Ultrastructure In Arabidopsis Thaliana, Juleen May Dickson

Theses and Dissertations

Communication between the male and female gametophyte is vital to successful fertilization during sexual reproduction in plants. One of the proteins known to be important for communication between the male and female gametophyte is LORELEI (LRE). Several studies have shown that there are defects in pollen tube guidance and synergid degeneration, however this is the first study that shows that cell wall thickness in the female gametophyte may also be affected. Previous confocal studies have documented that LRE is present both in the filiform apparatus and found in puncta throughout the cytoplasm. This study confirmed this, but our studies suggest …


Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar Aug 2019

Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar

Graduate School of Biomedical Sciences Theses and Dissertations

Autoantibodies (aAbs) by the simplest definitions have been described as antibodies against self-antigens and were exclusively associated with autoimmune diseases. Eventually, studies demonstrated that they are abundant in the blood of all human sera, regardless of age, gender, or the presence or absence of disease, and were thus named as ‘natural autoantibodies’. The underlying reason for their ubiquity has remained elusive, but we have hypothesized that they are responsible for clearing blood-borne cell and tissue debris generated under conditions of health and disease. To test this, we chose to use two widely different disease model systems, namely neurodegenerative diseases and …


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

Dissertations & Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point …


The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui Aug 2019

The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui

Electronic Theses and Dissertations

Chronic inflammation is an essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration and accumulation of macrophages in damaged tissues. Macrophage motility is highly regulated by adhesive receptors, integrins. Namely, intermediate expression of integrin supports macrophage migration, while a high integrin density inhibits it. Our studies are focused on evaluation of the contribution of related integrins αDβ2 and αMβ2 to macrophage migration and development of chronic inflammation.

We found that integrin αDβ2 is upregulated on M1-macrophages in vitro and …


The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer Aug 2019

The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer

Legacy Theses & Dissertations (2009 - 2024)

Skeletal muscle plays a crucial role in coordinating voluntary movement and accounts for nearly 50% of total body mass. Dysregulation in skeletal muscle development is known to cause muscle degenerative diseases including the devastating Duchenne Muscular Dystrophy (DMD). The majority of the biological studies investigating muscle development were based on myogenic transcription factors and signaling molecules including: Pax7, Myf5, MyoD, WNT, TGF-β and BMP. After the discovery of non-coding RNAs including microRNAs, it was postulated that these molecules could regulate gene expression and thus affect differentiation and development. MicroRNAs are small non-coding RNAs (~17-25 nucleotides) that regulate gene expression negatively …


Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao Aug 2019

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao

Dissertations & Theses (Open Access)

Deubiquitinating enzymes (DUBs, also called deubiquitinases) are enzymes that remove monoubiquitin or polyubiquitin chains from target proteins. DUBs have critical roles in cell homeostasis and signal transduction, as they regulate protein degradation, subcellular localization, and protein-protein interaction. Deregulation of DUBs contributes substantially to tumor formation and progression, and therefore targeting DUBs may be a promising cancer therapy strategy. My dissertation focuses on identifying the DUBs of EZH2 and SNAI1, two proteins critical for cancer progression and metastasis, and establishing these DUBs as promising anti-cancer targets.

EZH2, the catalytic component of the PRC2 complex, silences gene transcription by histone methylation. High …


Targeting Pten For Therapy In Cancer And Ptenopathies, Emily Palumbo Jul 2019

Targeting Pten For Therapy In Cancer And Ptenopathies, Emily Palumbo

USF Tampa Graduate Theses and Dissertations

PTEN, a dual protein and lipid phosphatase, regulates a myriad of cellular functions including PI3K pathway signaling, cell migration, proliferation, invasion and apoptosis. PTEN mutations often lead to multiple malignancies, including prostate, breast, endometrial, skin and brain cancers, associated with hyperactive PI3K signaling. PTEN mutations have also been associated with a variety of other diseases, classified as PTEN Hamartoma Tumor Syndromes (PHTS). In addition, compromised function or reduced expression of PTEN due to non-genomic mechanisms are associated with many types of hyperproliferative diseases, such as restenosis and neoplastic diseases, including melanoma, lung, breast, prostate and colon cancers. Although PI3K pathway …


Characterization Of Human Dutpase, Shawna Marie Rotoli Jul 2019

Characterization Of Human Dutpase, Shawna Marie Rotoli

Graduate School of Biomedical Sciences Theses and Dissertations

Deoxyuridine nucleotidyl transferase (dUTPase) is an enzyme found in all organisms that have thymine as a component of DNA. It catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate thus precluding the buildup of dUTP pools as well as providing the substrate, dUMP, for the de novo synthesis of thymidylate. In Homo sapiens, there are four isoforms: mitochondrial (mDut), nuclear (nDut), variant 3 and variant 4. This work is largely focused on nDut. Using structural and MS analyses of recombinant dUTPase constructs, an intermolecular disulfide bridge between cysteine-3 of each nDut monomer was discovered. It was found that these two …


Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali Jul 2019

Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali

Mechanical & Aerospace Engineering Theses & Dissertations

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin related diseases and cancers. Here, I devised methods to determine the endogenous intercellular force within cell pairs as well as in large epithelial islands. I further ascertained the factors that affect the level of inter-cellular tension.

Experiments with pairs of epithelial cells exogenously expressing …


The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller Jul 2019

The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller

Biological Sciences Theses & Dissertations

Foxp3+ regulatory T cells (TR) are an immunosuppressive subset of CD4+ T cells that maintain homeostasis of the immune system. They are sustained by the interaction between the Major Histocompatibility Complex (MHC) molecules present on antigen presenting dendritic cells and the T Cell Receptor (TCR) expressed on TR cells that is specific for the MHC loaded with an antigenic peptide. Here, we show that in addition to MHC/TCR interaction, Connexin-43 (Cx43) expression by dendritic cells is required to maintain the TR cell population. CD11c+ dendritic cells represent a major subset of antigen presenting cells. …


Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea Jun 2019

Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea

USF Tampa Graduate Theses and Dissertations

The posttranslational modification ubiquitination is major regulatory mechanism used throughout cell signaling pathways such as cell cycle regulation and the DNA damage response. As such, the E3 ligases and their deubiquitinating enzyme counterparts, which conjugate and deconjugate ubiquitin to and from protein substrates respectively, must be tightly regulated to prevent aberrant cellular behaviors that could lead to diseases such as cancer.

Of the five families of deubiquitinating enzymes, the Ovarian Tumor Domain (OTU) family is fairly unique and under-studied; many of its family members hold a linkage specificity to certain ubiquitin chains and a number of them have been implicated …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Zinc Chloride Enhanced Chondrogenesis Is Vegf Dependent, Gilbert M. Sharp Iv Jun 2019

Zinc Chloride Enhanced Chondrogenesis Is Vegf Dependent, Gilbert M. Sharp Iv

Seton Hall University Dissertations and Theses (ETDs)

Researchers have begun investigating whether insulin mimetics such as ZnCl2 could promote bone healing in both non-diabetic and diabetic fracture healing similarly to insulin. Our research focused on understanding the mechanism by which ZnCl2 affects chondrogenesis, an important component of bone fracture healing. The increases in proteoglycan deposition and cell proliferation seen in our data may be a result of ZnCl2 induction of the IGF-1 pathway. When the VEGF pathway was inhibited in ZnCl2- or insulin-treated cells significant decreases in proteoglycan deposition occurred on day 7 and 14 (P=0.007 for ZnCl2, P=0.028 for insulin) when compared to controls. This data …


Microrna Profiling And Engineering Of Cho Cell Lines Stably Expressing Difficult-To-Express Lysosomal Protein, Ifeanyi Amadi May 2019

Microrna Profiling And Engineering Of Cho Cell Lines Stably Expressing Difficult-To-Express Lysosomal Protein, Ifeanyi Amadi

KGI Theses and Dissertations

Difficult-to-express (DTE) recombinant proteins like multi-specific proteins, DTE monoclonal antibodies and lysosomal enzymes, have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells and other mammalian cells as production platforms. CHO cells are preferably used for protein production because of their innate ability to secrete human-like recombinant proteins with post-translational modification, resistance to viral infection and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, expression of DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there are growing interest in the use of microRNAs (miRNAs) …


Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor May 2019

Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor

MSU Graduate Theses

Uncoating is a poorly understood yet required step of HIV-1 replication that is defined as the disassembly of the viral capsid structure. The goal of this project is to characterize uncoating in C20 microglial cells. These cells are a natural target of HIV-1 that are infected to establish latent viral reservoirs and HIV-associated neurological disorders. A stable C20 cell line that expresses TRIM-CypA was established to study the kinetics of uncoating with the CsA washout assay. The expression of TRIM-CypA was confirmed by western blot and the functionality of the protein was confirmed by a viral infectivity assay. Using this …


Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods May 2019

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods

MSU Graduate Theses

Mucopolysaccharidosis type I (MPS I) is a rare, autosomal recessive disorder caused by the deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Absence of IDUA results in the accumulation of dermatan and heparin sulfate and ultimately causes multi-system dysfunction. The most severe form of MPS I is Hurlers syndrome, a rapidly progressive disorder that, if left untreated, is fatal. Current treatment options for diagnosed individuals includes hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). These treatments are able to ameliorate the majority of symptoms with the exception of the bone phenotype. This investigation aimed to further characterize the bone …