Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology

The Texas Medical Center Library

Ubiquitination

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao Aug 2019

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao

Dissertations & Theses (Open Access)

Deubiquitinating enzymes (DUBs, also called deubiquitinases) are enzymes that remove monoubiquitin or polyubiquitin chains from target proteins. DUBs have critical roles in cell homeostasis and signal transduction, as they regulate protein degradation, subcellular localization, and protein-protein interaction. Deregulation of DUBs contributes substantially to tumor formation and progression, and therefore targeting DUBs may be a promising cancer therapy strategy. My dissertation focuses on identifying the DUBs of EZH2 and SNAI1, two proteins critical for cancer progression and metastasis, and establishing these DUBs as promising anti-cancer targets.

EZH2, the catalytic component of the PRC2 complex, silences gene transcription by histone methylation. High …


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …